'This is an excellent and very timely text, presenting the modern tools of high-dimensional geometry and probability in a very accessible and applications-oriented manner, with plenty of informative exercises. The book is infused with the author's insights and intuition in this field, and has extensive references to the latest developments in the area. This book will be an extremely useful resource both for newcomers to this subject and for expert researchers.' Terence Tao, University of California, Los Angeles
Preface; Appetizer: using probability to cover a geometric set; 1. Preliminaries on random variables; 2. Concentration of sums of independent random variables; 3. Random vectors in high dimensions; 4. Random matrices; 5. Concentration without independence; 6. Quadratic forms, symmetrization and contraction; 7. Random processes; 8. Chaining; 9. Deviations of random matrices and geometric consequences; 10. Sparse recovery; 11. Dvoretzky-Milman's theorem; Bibliography; Index.
Vershynin, Roman Roman Vershynin is Professor of Mathematics at the University of California, Irvine. He studies random geometric structures across mathematics and data sciences, in particular in random matrix theory, geometric functional analysis, convex and discrete geometry, geometric combinatorics, high-dimensional statistics, information theory, machine learning, signal processing, and numerical analysis. His honors include an Alfred Sloan Research Fellowship in 2005, an invited talk at the International Congress of Mathematicians in Hyderabad in 2010, and a Bessel Research Award from the Humboldt Foundation in 2013. His 'Introduction to the Non-Asymptotic Analysis of Random Matrices' has become a popular educational resource for many new researchers in probability and data science.