• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Group Theory » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2939893]
• Literatura piękna
 [1808953]

  więcej...
• Turystyka
 [70366]
• Informatyka
 [150555]
• Komiksy
 [35137]
• Encyklopedie
 [23160]
• Dziecięca
 [608786]
• Hobby
 [136447]
• AudioBooki
 [1631]
• Literatura faktu
 [225099]
• Muzyka CD
 [360]
• Słowniki
 [2914]
• Inne
 [442115]
• Kalendarze
 [1068]
• Podręczniki
 [166599]
• Poradniki
 [468390]
• Religia
 [506548]
• Czasopisma
 [506]
• Sport
 [61109]
• Sztuka
 [241608]
• CD, DVD, Video
 [3308]
• Technologie
 [218981]
• Zdrowie
 [98614]
• Książkowe Klimaty
 [124]
• Zabawki
 [2174]
• Puzzle, gry
 [3275]
• Literatura w języku ukraińskim
 [260]
• Art. papiernicze i szkolne
 [7376]
Kategorie szczegółowe BISAC

Group Theory

ISBN-13: 9783031213069 / Angielski / Twarda / 2023

Dinesh Khattar; Neha Agrawal
Group Theory Dinesh Khattar Neha Agrawal 9783031213069 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Group Theory

ISBN-13: 9783031213069 / Angielski / Twarda / 2023

Dinesh Khattar; Neha Agrawal
cena 361,42
(netto: 344,21 VAT:  5%)

Najniższa cena z 30 dni: 346,96
Termin realizacji zamówienia:
ok. 22 dni roboczych.

Darmowa dostawa!

This textbook focuses on the basics and complex themes of group theory taught to senior undergraduate mathematics students across universities. The contents focus on the properties of groups, subgroups, cyclic groups, permutation groups, cosets and Lagrange’s theorem, normal subgroups and factor groups, group homomorphisms and isomorphisms, automorphisms, direct products, group actions and Sylow theorems. Pedagogical elements such as end of chapter exercises and solved problems are included to help understand abstract notions. Intermediate lemmas are also carefully designed so that they not only serve the theorems but are also valuable independently. The book is a useful reference to undergraduate and graduate students besides academics.

This textbook focuses on the basics and complex themes of group theory taught to senior undergraduate mathematics students across universities. The contents focus on the properties of groups, subgroups, cyclic groups, permutation groups, cosets and Lagrange’s theorem, normal subgroups and factor groups, group homomorphisms and isomorphisms, automorphisms, direct products, group actions and Sylow theorems. Pedagogical elements such as end of chapter exercises and solved problems are included to help understand abstract notions. Intermediate lemmas are also carefully designed so that they not only serve the theorems but are also valuable independently. The book is a useful reference to undergraduate and graduate students besides academics.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Algebra - General
Computers > Security - Cryptography & Encryption
Technology & Engineering > Engineering (General)
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9783031213069
Rok wydania:
2023
Dostępne języki:
Oprawa:
Twarda

1. Group....................................................................................................... 1–58
1.1 Groups................................................................................................... 4
1.2 Cayley Table.......................................................................................... 8
1.3 Elementary Properties of Groups........................................................ 32
1.4 Dihedral Groups.................................................................................. 49
2. Finite Groups and Subgroups.............................................................. 59–98
2.1 Finite Groups....................................................................................... 59
2.2 Subgroups............................................................................................ 70
2.3 Subgroup Tests.................................................................................... 71
2.4 Special Class of Subgroups................................................................. 82
2.5 Intersection and Union of Subgroups................................................. 91
2.6 Product of Two Subgroups................................................................ 93
3. Cyclic Groups..................................................................................... 99–118
3.1 Cyclic Groups and their Properties..................................................... 99
3.2 Generators of a Cyclic Group........................................................... 102
3.3 Subgroups of Cyclic Groups............................................................. 104
4. Permutation Groups......................................................................... 119–142
4.1 Permutation of a Set.......................................................................... 119
4.2 Permutation Group of a Set.............................................................. 121
4.3 Cycle Notation................................................................................... 124
4.4 Theorems on Permutations and Cycles .......................................... 126
4.5 Even and Odd Permutations.............................................................. 134
4.6 Alternating Group of Degree n......................................................... 138
5. Cosets and Lagrange’s Theorem................................................... 143–168
5.1 Definition of Cosets and Properties of Cosets.................................. 143
5.2 Lagrange’s Theorem and its Applications........................................ 148
5.3 Application of Cosets to Permutation Groups.................................. 164
(xii)
6. Normal Subgroups and Factor Groups ........................................ 169–194
6.1 Normal Subgroup and Equivalent Conditions for a Subgroup to be
Normal............................................................................................... 169
6.2 Factor Groups.................................................................................... 180
6.3 Commutator Subgroup of a Group and its Properties...................... 187
6.4 The G/Z Theorem.............................................................................. 189
6.5 Cauchy’s Theorem for Abelian Group............................................. 191
7. Group Homomorphism and Isomorphism........................................ 195–222
7.1 Homomorphism of Groups and its Properties.................................. 195
7.2 Properties of Subgroups under Homomorphism............................... 200
7.3 Isomorphism of Groups..................................................................... 205
7.4 Some Theorems Based on Isomorphism of Groups......................... 207
8. Automorphisms ................................................................................. 223–240
8.1 Automorphism of a Group................................................................ 223
8.2 Inner Automorphisms........................................................................ 226
8.3 Theorems Based on Automorphism of a Group............................... 228
9. Direct Products............................................................................... 241–270
9.1 External Direct Product..................................................................... 241
9.2 Properties of External Direct Products............................................. 244
9.3 U(n) as External Direct Products...................................................... 249
9.4 Internal Direct Products..................................................................... 254
9.5 Fundamental Theorem of Finite Abelian Groups............................. 258
10. Group Actions.................................................................................. 271–302
10.1 Group Actions................................................................................. 271
10.2 Kernels, Orbits and Stabilizers........................................................ 275
10.3 Group acting on themselves by Conjugation.................................. 291
10.4 Conjugacy in Sn.............................................................................. 296
11. Sylow Theorems............................................................................... 303–325
11.1 p–Groups and Sylow p–subgroups.................................................. 303
11.2 Simple Groups................................................................................. 309​

Dinesh Khattar, Ph.D., is a professor in the Department of Mathematics, Kirori Mal College, University of Delhi, India. He also served as the Principal of Kirori Mal College from 2015 to 2018. He is a topper (Gold Medalist) in his B.Sc. and M.Sc. exams. He received Dr. S. Radhakrishnan Memorial National Teachers Award 2015 for the contribution in the field of education. He has also been awarded prestigious Commonwealth Scholarship for pursuing research in UK. He is actively involved in research and presented papers in prestigious international conferences across several countries. Dr. Khattar has been a member of curriculum development committee for B.Sc. and M.Sc. programs in various universities including University of Delhi. He is also an author of many books on mathematics.

Neha Agrawal has completed her graduation and post-graduation degrees from Kirori Mal College, University of Delhi, India. She has done her M.Phil. and Ph.D. from University of Delhi. Her area of interest is nonlinear dynamical systems and chaos theory. She has been working as an assistant professor in the Department of Mathematics, Kirori Mal College since 2012. She has teaching experience of 12 years. She has published number of research papers in international journals.

This textbook focuses on the basics and complex themes of group theory taught to senior undergraduate mathematics students across universities. The contents focus on the properties of groups, subgroups, cyclic groups, permutation groups, cosets and Lagrange’s theorem, normal subgroups and factor groups, group homomorphisms and isomorphisms, automorphisms, direct products, group actions and Sylow theorems. Pedagogical elements such as end of chapter exercises and solved problems are included to help understand abstract notions. Intermediate lemmas are also carefully designed so that they not only serve the theorems but are also valuable independently. The book is a useful reference to undergraduate and graduate students besides academics.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia