• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Grassmann and Stiefel Varieties over Composition Algebras » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2952079]
• Literatura piękna
 [1850969]

  więcej...
• Turystyka
 [71058]
• Informatyka
 [151066]
• Komiksy
 [35579]
• Encyklopedie
 [23181]
• Dziecięca
 [620496]
• Hobby
 [139036]
• AudioBooki
 [1646]
• Literatura faktu
 [228729]
• Muzyka CD
 [379]
• Słowniki
 [2932]
• Inne
 [445708]
• Kalendarze
 [1409]
• Podręczniki
 [164793]
• Poradniki
 [480107]
• Religia
 [510956]
• Czasopisma
 [511]
• Sport
 [61267]
• Sztuka
 [243299]
• CD, DVD, Video
 [3411]
• Technologie
 [219640]
• Zdrowie
 [100984]
• Książkowe Klimaty
 [124]
• Zabawki
 [2281]
• Puzzle, gry
 [3363]
• Literatura w języku ukraińskim
 [258]
• Art. papiernicze i szkolne
 [8020]
Kategorie szczegółowe BISAC

Grassmann and Stiefel Varieties over Composition Algebras

ISBN-13: 9783031364044 / Angielski / Twarda / 2023

Marek Golasiński;Francisco Gómez Ruiz
Grassmann and Stiefel Varieties over Composition Algebras Marek Golasiński, Francisco Gómez Ruiz 9783031364044 Springer Nature Switzerland - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Grassmann and Stiefel Varieties over Composition Algebras

ISBN-13: 9783031364044 / Angielski / Twarda / 2023

Marek Golasiński;Francisco Gómez Ruiz
cena 603,81
(netto: 575,06 VAT:  5%)

Najniższa cena z 30 dni: 578,30
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!
inne wydania

This monograph deals with matrix manifolds, i.e., manifolds for which there is a natural representation of their elements as matrix arrays. Classical matrix manifolds (Stiefel, Grassmann and flag manifolds) are studied in a more general setting. It provides tools to investigate matrix varieties over Pythagorean formally real fields. The presentation of the book is reasonably self-contained. It contains a number of nontrivial results on matrix manifolds useful for people working not only in differential geometry and Riemannian geometry but in other areas of mathematics as well. It is also designed to be readable by a graduate student who has taken introductory courses in algebraic and differential geometry.

Kategorie:
Nauka, Matematyka
Wydawca:
Springer Nature Switzerland
Seria wydawnicza:
RSME Springer Series
Język:
Angielski
ISBN-13:
9783031364044
Rok wydania:
2023
Waga:
0.69 kg
Wymiary:
23.5 x 15.5
Oprawa:
Twarda
Dodatkowe informacje:
Wydanie ilustrowane

Chapter 1 Algebraic preliminaries

The main goal of this chapter is to introduce some notations and

terminologies. We assume that the reader is more or less familiar

with the basic concepts of algebraic geometry and linear algebra.

 

Chapter 2 Exceptional groups $G_2(K)$ and $F_4(K)$

This chapter takes up the systematic study of a generalization

of the exceptional compact Lie groups $G_2$ and $F_4$ on groups $G_2(K)$

and $F_4(K)$ provided $K$ is Pythagorean formally real field. The main result stated in Theorem 2.48 says that any

Hermitian $3 \times 3$-matrix $A \in \mbox_3(\mathbb(K))$ can

be transformed to a diagonal form by some element of $F_4(K)$.

 

Chapter 3 Stiefel, Grassmann manifolds and generalizations

In this chapter we investigate and prove some properties of the

classical manifolds of Stiefel, Grassmann and flag manifolds.

All along this chapter $\mathcal$ denotes the field of

reals, $\mathbb$, the field of complex

numbers, $\mathbb$, the skew field of

quaternions, $\mathbb$ and, except if otherwise

said the octonion division algebra, $\mathbb$.

 

Chapter 4 More classical matrix varieties

In this chapter we generalize Stiefel, Grassmann and flag

manifolds, defined in Chapter 3, to what we call

here i-Stiefel, i-Grassmann and i-flag manifolds.

This “i” comes from idempotent. Those manifolds do not seem

to have being enough studied in the literature. In particular, they

do not have even a name. As in Chapter 2,$ \mathcal$ denotes the

field of reals, $\mathbb$, the field of complex numbers, $\mathbb$, theskew field of quaternions, $\mathbb$ and,

occasionally, the octonion division algebra $\mathbb$.

 

Chapter 5 Algebraic generalizations of matrix varieties

We use Chapters 1 and 2 to define and extend results of

Chapters 3 and 4 to matrix varieties over more general division

algebras.

That includes extending the classical definitions of Riemannian,

Hermitian and symplectic manifolds.

All along this chapter $K$ is a formally real

Pythagorean field and $\mathcal$ denotes either $K$, the

complex $K$-algebra $\mathbb(K)$, the quaternion $K$-algebra $\mathbb(K)$ or the

octonion $K$-algebra $\mathbb(K)$.

 

Chapter 6 Curvature, geodesics and distance on matrix varieties

In this chapter we study more closely the Riemannian structure

of classical matrix manifolds introduced in Chapters 3 and 4.

Here, $\mathcal = \mathbb,\, \mathbb,\, \mathbb$ and

occasionally $\mathbb$.

We also extend, whenever it is possible, definitions and

results to the general case treated in Chapter 5,

where $\mathcal = K,\, \mathbb(K),\, \mathbb(K),\, \mathbb(K)$

for $K$ a Pythagorean formally real field.

 

Marek Golasiński is a Professor at the Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn (Poland) since 2012. He was previously Associate Professor at the Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Toruń (Poland) from 1971-2011. He was awarded the degrees of Ph.D. (1978) and Habilitation (2004), both in Algebraic Topology from the Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Toruń (Poland). He has written a previous book (with Juno Mukai) on Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces.

Francisco Gómez Ruiz studied mathematics at the University of Barcelona. In 1978 received his doctorate at the University of Toronto (Stephen Halperin was his advisor). After 2 years at the department of mathematics of the Autonomous University of Barcelona and one year at the University of Cantabria, he has been 33 years professor at the department of algebra, geometry and topology of the University of Malaga. He has published over 30 research articles and 3 books.

This monograph deals with matrix manifolds, i.e., manifolds for which there is a natural representation of their elements as matrix arrays. Classical matrix manifolds (Stiefel, Grassmann and flag manifolds) are studied in a more general setting. It provides tools to investigate matrix varieties over Pythagorean formally real fields. The presentation of the book is reasonably self-contained. It contains a number of nontrivial results on matrix manifolds useful for people working not only in differential geometry and Riemannian geometry but in other areas of mathematics as well. It is also designed to be readable by a graduate student who has taken introductory courses in algebraic and differential geometry.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia