1. An introduction to catalysis 2. Atomic properties and electronic structure 3. Synthesis and surface modification 4. Characterization 5. Graphene-based metal particles 6. Oxygen reduction reaction 7. Alcohols oxidation and hydrogen evolution 8. Graphene and anticorrosive properties 9. Graphene-based electrochemical supercapacitors 10. Gas convertor and storage
Dr Karim Kakaei received his PhD in Physical chemistry from the Tarbiat Maodares University in 2010. He spent six years at Maragheh University studying fundamental aspects of graphene, resulting in several ground-breaking papers in highly ranked journals including Carbon, Journal of Materials Chemistry A and Journal of Power Sources where he worked on optimizing mass production of graphene, and on developing novel doped graphene applications. He received grants from the Fuel Cell Steering Committee, SANA, Iran, and from East Azerbaijan Science and Technology Park (EASTP) of Iran. He currently serves as an assistant professor in the Department of Physical Chemistry and Nano Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran.
Mehdi D. Esrafili received his MS & Ph.D at Tarbiat Modares University. Then, he joined Kyoto University. Dr. Esrafili is currently working as Head of Laboratory and working group on computational chemistry at University of Maragheh, Iran. His research focuses on intermolecular interactions and reaction mechanism using electronic structure methods.
Dr. Ali Ehsani has a multidisciplinary background and a broad research interest in electrochemical systems. He published numerous ISI articles in electrochemical systems such as graphene based materials as a supercapacitors, electrocatalysts and corrosion inhibitors.