• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Graph Machine Learning: Learn about the latest advancements in Graph data to build robust machine learning algorithms » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946350]
• Literatura piękna
 [1816154]

  więcej...
• Turystyka
 [70666]
• Informatyka
 [151172]
• Komiksy
 [35576]
• Encyklopedie
 [23172]
• Dziecięca
 [611458]
• Hobby
 [135995]
• AudioBooki
 [1726]
• Literatura faktu
 [225763]
• Muzyka CD
 [378]
• Słowniki
 [2917]
• Inne
 [444280]
• Kalendarze
 [1179]
• Podręczniki
 [166508]
• Poradniki
 [469467]
• Religia
 [507199]
• Czasopisma
 [496]
• Sport
 [61352]
• Sztuka
 [242330]
• CD, DVD, Video
 [3348]
• Technologie
 [219391]
• Zdrowie
 [98638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2382]
• Puzzle, gry
 [3525]
• Literatura w języku ukraińskim
 [259]
• Art. papiernicze i szkolne
 [7107]
Kategorie szczegółowe BISAC

Graph Machine Learning: Learn about the latest advancements in Graph data to build robust machine learning algorithms

ISBN-13: 9781803248066 / Angielski / Miękka / 2025 / 18 str.

Aldo Marzullo, Enrico Deusebio, Claudio Stamile
Graph Machine Learning: Learn about the latest advancements in Graph data to build robust machine learning algorithms Aldo Marzullo, Enrico Deusebio, Claudio Stamile 9781803248066 Packt Publishing Limited - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Graph Machine Learning: Learn about the latest advancements in Graph data to build robust machine learning algorithms

ISBN-13: 9781803248066 / Angielski / Miękka / 2025 / 18 str.

Aldo Marzullo, Enrico Deusebio, Claudio Stamile
cena 237,33
(netto: 226,03 VAT:  5%)

Najniższa cena z 30 dni: 234,10
Termin realizacji zamówienia:
ok. 16-18 dni roboczych.

Darmowa dostawa!

Explore the updated edition with new chapters on LLMs, Temporal Graphs, and updated Pytorch Geometric examples to enhance your data science skills. Key Features Master new graph ML techniques with updated Pytorch Geometric examples Explore case studies that demonstrate real-world applications of GML Leverage graphs for advanced tasks in LLMs and Temporal learning Book DescriptionGraph Machine Learning, Second Edition not only revises but expands on its successful first edition, providing you with the latest tools and techniques in graph machine learning. This edition introduces comprehensive updates across all chapters, new chapters on trending topics like LLMs and Temporal Graph Learning, and real-world case studies that illustrate the practical applications of these concepts. From basic graph theory to advanced machine learning models, the book guides you through understanding how data can be represented as graphs to uncover complex patterns and relationships hidden in your data. This edition emphasizes practical application with updated code examples using Pytorch Geometric, making it easier for you to implement what you learn. The expanded content includes detailed chapters on using graph machine learning for dynamic and evolving data and integrating graph theory with Large Language Models (LLMs) for enriched data interaction and analysis. By the end of this book, you’ll not only be versed in the theory of graph machine learning but also adept at applying it to solve real challenges in innovative ways.What you will learn Implement graph ML algorithms with some examples in PyTorch Geometric Apply graph analysis to dynamic datasets using Temporal Graph ML Enhance NLP and text analytics with graph-based techniques Solve complex real-world problems with graph machine learning Build and scale graph-powered ML applications effectively Deploy and scale out your application seamlessly Who this book is forThis book is ideal for data scientists, ML professionals, and graph specialists looking to deepen their knowledge of graph data analysis or expand their machine learning toolkit. Prior knowledge of Python and basic machine learning principles is recommended.

Explore the updated edition with new chapters on LLMs, Temporal Graphs, and updated Pytorch Geometric examples to enhance your data science skills. Key Features Master new graph ML techniques with updated Pytorch Geometric examples Explore case studies that demonstrate real-world applications of GML Leverage graphs for advanced tasks in LLMs and Temporal learning Book DescriptionGraph Machine Learning, Second Edition not only revises but expands on its successful first edition, providing you with the latest tools and techniques in graph machine learning. This edition introduces comprehensive updates across all chapters, new chapters on trending topics like LLMs and Temporal Graph Learning, and real-world case studies that illustrate the practical applications of these concepts. From basic graph theory to advanced machine learning models, the book guides you through understanding how data can be represented as graphs to uncover complex patterns and relationships hidden in your data. This edition emphasizes practical application with updated code examples using Pytorch Geometric, making it easier for you to implement what you learn. The expanded content includes detailed chapters on using graph machine learning for dynamic and evolving data and integrating graph theory with Large Language Models (LLMs) for enriched data interaction and analysis. By the end of this book, you’ll not only be versed in the theory of graph machine learning but also adept at applying it to solve real challenges in innovative ways.What you will learn Implement graph ML algorithms with some examples in PyTorch Geometric Apply graph analysis to dynamic datasets using Temporal Graph ML Enhance NLP and text analytics with graph-based techniques Solve complex real-world problems with graph machine learning Build and scale graph-powered ML applications effectively Deploy and scale out your application seamlessly Who this book is forThis book is ideal for data scientists, ML professionals, and graph specialists looking to deepen their knowledge of graph data analysis or expand their machine learning toolkit. Prior knowledge of Python and basic machine learning principles is recommended.

Kategorie:
Informatyka
Kategorie BISAC:
Computers > Data Science - Neural Networks
Computers > Artificial Intelligence - General
Mathematics > Matematyka dyskretna
Wydawca:
Packt Publishing Limited
Język:
Angielski
ISBN-13:
9781803248066
Rok wydania:
2025
Ilość stron:
18
Wymiary:
23.5x19.1
Oprawa:
Miękka


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia