• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Graph Learning for Fashion Compatibility Modeling » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Graph Learning for Fashion Compatibility Modeling

ISBN-13: 9783031188190 / Angielski / Miękka / 2023

Weili Guan;Xuemeng Song; Xiaojun Chang
Graph Learning for Fashion Compatibility Modeling Guan, Weili, Xuemeng Song, Chang, Xiaojun 9783031188190 Springer International Publishing - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Graph Learning for Fashion Compatibility Modeling

ISBN-13: 9783031188190 / Angielski / Miękka / 2023

Weili Guan;Xuemeng Song; Xiaojun Chang
cena 242,07 zł
(netto: 230,54 VAT:  5%)

Najniższa cena z 30 dni: 231,29 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

This book sheds light on state-of-the-art theories for more challenging outfit compatibility modeling scenarios.  In particular, this book presents several cutting-edge graph learning techniques that can be used for outfit compatibility modeling.  Due to its remarkable economic value, fashion compatibility modeling has gained increasing research attention in recent years.  Although great efforts have been dedicated to this research area, previous studies mainly focused on fashion compatibility modeling for outfits that only involved two items and overlooked the fact that each outfit may be composed of a variable number of items.  This book develops a series of graph-learning based outfit compatibility modeling schemes, all of which have been proven to be effective over several public real-world datasets.  This systematic approach benefits readers by introducing the techniques for compatibility modeling of outfits that involve a variable number of composing items.  To deal with the challenging task of outfit compatibility modeling, this book provides comprehensive solutions, including correlation-oriented graph learning, modality-oriented graph learning, unsupervised disentangled graph learning, partially supervised disentangled graph learning, and metapath-guided heterogeneous graph learning.  Moreover, this book sheds light on research frontiers that can inspire future research directions for scientists and researchers.  

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > System Administration - Storage & Retrieval
Computers > Data Science - Data Analytics
Computers > Business & Productivity Software - General
Wydawca:
Springer International Publishing
Seria wydawnicza:
Synthesis Lectures on Information Concepts, Retrieval, and S
Język:
Angielski
ISBN-13:
9783031188190
Rok wydania:
2023
Waga:
0.23 kg
Wymiary:
24.0 x 16.8
Oprawa:
Miękka
Dodatkowe informacje:
Wydanie ilustrowane

Introduction.- Correlation-oriented Graph Learning for OCM.- Modality-oriented Graph Learning for OCM.- Unsupervised Disentangled Graph Learning for OCM.- Supervised Disentangled Graph Learning for OCM.- Heterogeneous Graph Learning for Personalized OCM.- Research Frontiers.

Weili Guan received a master degree from National University of Singapore. After that, she joined Hewlett Packard Enterprise in Singapore as a Software Engineer and worked there for several years.  She is currently a PhD student with the Faculty of Information Technology, Monash University (Clayton Campus), Australia. Her research interests are multimedia computing and information retrieval. She has authored or co-authored more than 30 papers at first-tier conferences and journals, like ACM MM, SIGIR, and IEEE TIP.


Xuemeng Song received a B.E. from the University of Science and Technology of China in 2012, and a Ph.D. from the School of Computing, National University of Singapore in 2016. She is currently an Associate Professor of Shandong University, Jinan, China. Her research interests include the information retrieval and social network analysis. She has published several papers in top venues, such as ACM SIGIR, MM, TIP, and TOIS. In addition, she has served as a reviewer for many top conferences and journals.

Dr. Xiaojun Chang is a Professor at the Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology, University of Technology Sydney.  He is the Director of The ReLER Lab. He is also an Honorary Professor in the School of Computing Technologies, RMIT University, Australia. Before joining UTS, he was an Associate Professor at School of Computing Technologies, RMIT University, Australia. After graduation, he subsequently worked as a Postdoc Research Fellow at School of Computer Science, Carnegie Mellon University, Lecturer and Senior Lecturer in the Faculty of Information Technology, Monash University, Australia.  He has focused his research on exploring multiple signals (visual, acoustic, textual) for automatic content analysis in unconstrained or surveillance videos.  His team has won multiple prizes from international grand challenges which hosted competitive teams from MIT, University of Maryland, Facebook AI Research (FAIR) and Baidu VIS, and aim to advance visual understanding using deep learning. For example, he won the first place in the TrecVID 2019 - Activity Extended Video (ActEV) challenge, which was held by National Institute of Standards and Technology, US.

Liqiang Nie, Ph.D., is Dean with the Department of Computer Science and Technology at Harbin Institute of Technology (Shenzhen).  He received his B.Eng. and Ph.D. degrees from Xi'an Jiaotong University and National University of Singapore (NUS), respectively. His research interests lie primarily in multimedia computing and information retrieval.  Dr. Nie has co-/authored more than 100 papers and four books and has received more than 15,000 Google Scholar citations.  He is an Associate Editor of IEEE TKDE, IEEE TMM, IEEE TCSVT, ACM ToMM, and Information Science. He is also a regular area chair of ACM MM, NeurIPS, IJCAI, and AAAI and a member of ICME steering committee.  Dr. Nie has received many awards, including ACM MM and SIGIR best paper honorable mention in 2019, SIGMM rising star in 2020, TR35 China 2020, DAMO Academy Young Fellow in 2020, and SIGIR best student paper in 2021.

This book sheds light on state-of-the-art theories for more challenging outfit compatibility modeling scenarios.  In particular, this book presents several cutting-edge graph learning techniques that can be used for outfit compatibility modeling.  Due to its remarkable economic value, fashion compatibility modeling has gained increasing research attention in recent years.  Although great efforts have been dedicated to this research area, previous studies mainly focused on fashion compatibility modeling for outfits that only involved two items and overlooked the fact that each outfit may be composed of a variable number of items.  This book develops a series of graph-learning based outfit compatibility modeling schemes, all of which have been proven to be effective over several public real-world datasets.  This systematic approach benefits readers by introducing the techniques for compatibility modeling of outfits that involve a variable number of composing items.  To deal with the challenging task of outfit compatibility modeling, this book gives comprehensive solutions, including correlation-oriented graph learning, modality-oriented graph learning, unsupervised disentangled graph learning, partially supervised disentangled graph learning, and metapath-guided heterogeneous graph learning.  Moreover, this book sheds light on research frontiers that can inspire future research directions for scientists and researchers.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia