ISBN-13: 9781107103405 / Angielski / Twarda / 2018 / 452 str.
A readable exposition of how Euclidean and other geometries can be distinguished using linear algebra and transformation groups.
'This is a book written with a passion for geometry, for complete lists, for consistent notation, for telling the history of a concept, and a passion to give an insight into a situation before going into the details.' Erich W. Ellers, zbMATH
Introduction; 1. Homogenous spaces; 2. Linear geometries; 3. Circular geometries; 4. Real collineation groups; 5. Equiareal collineations; 6. Real isometry groups; 7. Complex spaces; 8. Complex collineation groups; 9. Circularities and concatenations; 10. Unitary isometry groups; 11. Finite symmetry groups; 12. Euclidean symmetry groups; 13. Hyperbolic coxeter groups; 14. Modular transformations; 15. Quaternionic modular groups.
Czytaj nas na: