• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Genetic Algorithms: Concepts and Designs [With Disk] » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Genetic Algorithms: Concepts and Designs [With Disk]

ISBN-13: 9781852330729 / Angielski / Miękka / 1999 / 344 str.

K. F. Man; K. S. Tang; S. Kwong
Genetic Algorithms: Concepts and Designs [With Disk] Man, Kim-Fung 9781852330729 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Genetic Algorithms: Concepts and Designs [With Disk]

ISBN-13: 9781852330729 / Angielski / Miękka / 1999 / 344 str.

K. F. Man; K. S. Tang; S. Kwong
cena 201,72 zł
(netto: 192,11 VAT:  5%)

Najniższa cena z 30 dni: 192,74 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Genetic Algorithms (GA) as a tool for a search and optimizing methodology has now reached a mature stage. It has found many useful applications in both the scientific and engineering arenas. The main reason for this success is undoubtedly due to the advances that have been made in solid-state microelectronics fabrication that have, in turn, led to the proliferation of widely available, low cost, and speedy computers. The GA works on the Darwinian principle of natural selection for which the noted English philosopher, Herbert Spencer coined the phrase "Survival of the fittest." As a numerical optimizer, the solutions obtained by the GA are not mathematically oriented. Instead, GA possesses an intrinsic flexibility and the freedom to choose desirable optima according to design specifications. Whether the criteria of concern be nonlinear, constrained, discrete, multimodal, or NP hard, the GA is entirely equal to the challenge. In fact, because of the uniqueness of the evolutionary process and the gene structure of a chromosome, the GA processing mechanism can take the form ofparallelism and multiobjective. These provide an extra dimension for solutions where other techniques may have failed completely. It is, therefore, the aim ofthis booktogather together relevant GA materialthat has already been used and demonstrated in various engineering disciplines.

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Electrical
Computers > Programming - General
Computers > Artificial Intelligence - General
Wydawca:
Springer
Seria wydawnicza:
Advanced Textbooks in Control and Signal Processing
Język:
Angielski
ISBN-13:
9781852330729
Rok wydania:
1999
Wydanie:
1999. Corr. 2nd
Numer serii:
000123335
Ilość stron:
344
Waga:
0.56 kg
Wymiary:
23.42 x 15.52 x 2.39
Oprawa:
Miękka
Wolumenów:
01

From the reviews:

This superb book is suitable for readers from a wide range of disciplines.

Assembly Automation 20 (2000) 86

 

This is a well-written engineering textbook. Genetic algorithms are properly explained and well motivated. The engineering examples illustrate the power of application of genetic algorithms.

Journal of the American Statistical Association March (2002) 366 (Reviewer: William F. Fulkerson)

 

The book is a good contribution to the genetic algorithm area from an applied point of view. It should be read by engineers, undergraduate or postgraduate students and researchers.

International Journal of Adaptive Control and Signal Processing 19 (2005) 59 - 62 (Reviewer: Doris Saez)

1. Introduction, Background and Biological Inspiration.- 1.1 Biological Background.- 1.1.1 Coding of DNA.- 1.1.2 Flow of Genetic Information.- 1.1.3 Recombination.- 1.1.4 Mutation.- 1.2 Conventional Genetic Algorithm.- 1.3 Theory and Hypothesis.- 1.3.1 Schema Theory.- 1.3.2 Building Block Hypothesis.- 1.4 A Simple Example.- 2. Modifications to Genetic Algorithms.- 2.1 Chromosome Representation.- 2.2 Objective and Fitness Functions.- 2.2.1 Linear Scaling.- 2.2.2 Sigma Truncation.- 2.2.3 Power Law Scaling.- 2.2.4 Ranking.- 2.3 Selection Methods.- 2.4 Genetic Operations.- 2.4.1 Crossover.- 2.4.2 Mutation.- 2.4.3 Operational Rates Settings.- 2.4.4 Reordering.- 2.5 Replacement Scheme.- 2.6 A Game of Genetic Creatures.- 2.7 Chromosome Representation.- 2.8 Fitness Function.- 2.9 Genetic Operation.- 2.9.1 Selection Window for Functions and Parameters.- 2.10 Demo and Run.- 3. Intrinsic Characteristics.- 3.1 Parallel Genetic Algorithm.- 3.1.1 Global GA.- 3.1.2 Migration GA.- 3.1.3 Diffusion GA.- 3.2 Multiple Objective.- 3.3 Robustness.- 3.4 Multimodal.- 3.5 Constraints.- 3.5.1 Searching Domain.- 3.5.2 Repair Mechanism.- 3.5.3 Penalty Scheme.- 3.5.4 Specialized Genetic Operations.- 4. Hierarchical Genetic Algorithm.- 4.1 Biological Inspiration.- 4.1.1 Regulatory Sequences and Structural Genes.- 4.1.2 Active and Inactive Genes.- 4.2 Hierarchical Chromosome Formulation.- 4.3 Genetic Operations.- 4.4 Multiple Objective Approach.- 4.4.1 Iterative Approach.- 4.4.2 Group Technique.- 4.4.3 Multiple-Objective Ranking.- 5. Genetic Algorithms in Filtering.- 5.1 Digital IIR Filter Design.- 5.1.1 Chromosome Coding.- 5.1.2 The Lowest Filter Order Criterion.- 5.2 Time Delay Estimation.- 5.2.1 Problem Formulation.- 5.2.2 Genetic Approach.- 5.2.3 Results.- 5.3 Active Noise Control.- 5.3.1 Problem Formulation.- 5.3.2 Simple Genetic Algorithm.- 5.3.3 Multiobjective Genetic Algorithm Approach.- 5.3.4 Parallel Genetic Algorithm Approach.- 5.3.5 Hardware GA Processor.- 6. Genetic Algorithms in H-infinity Control.- 6.1 A Mixed Optimization Design Approach.- 6.1.1 Hierarchical Genetic Algorithm.- 6.1.2 Application I: The Distillation Column Design.- 6.1.3 Application II: Benchmark Problem.- 6.1.4 Design Comments.- 7. Hierarchical Genetic Algorithms in Computational Intelligence.- 7.1 Neural Networks.- 7.1.1 Introduction of Neural Network.- 7.1.2 HGA Trained Neural Network (HGANN).- 7.1.3 Simulation Results.- 7.1.4 Application of HGANN on Classification.- 7.2 Fuzzy Logic.- 7.2.1 Basic Formulation of Fuzzy Logic Controller.- 7.2.2 Hierarchical Structure.- 7.2.3 Application I: Water Pump System.- 7.2.4 Application II: Solar Plant.- 8. Genetic Algorithms in Speech Recognition Systems.- 8.1 Background of Speech Recognition Systems.- 8.2 Block Diagram of a Speech Recognition System.- 8.3 Dynamic Time Warping.- 8.4 Genetic Time Warping Algorithm (GTW).- 8.4.1 Encoding mechanism.- 8.4.2 Fitness function.- 8.4.3 Selection.- 8.4.4 Crossover.- 8.4.5 Mutation.- 8.4.6 Genetic Time Warping with Relaxed Slope Weighting Function (GTW-RSW).- 8.4.7 Hybrid Genetic Algorithm.- 8.4.8 Performance Evaluation.- 8.5 Hidden Markov Model using Genetic Algorithms.- 8.5.1 Hidden Markov Model.- 8.5.2 Training Discrete HMMs using Genetic Algorithms.- 8.5.3 Genetic Algorithm for Continuous HMM Training.- 8.6 A Multiprocessor System for Parallel Genetic Algorithms.- 8.6.1 Implementation.- 8.7 Global GA for Parallel GA-DTW and PGA-HMM.- 8.7.1 Experimental Results of Nonlinear Time-Normalization by the Parallel GA-DTW.- 8.8 Summary.- 9. Genetic Algorithms in Production Planning and Scheduling Problems.- 9.1 Background of Manufacturing Systems.- 9.2 ETPSP Scheme.- 9.2.1 ETPSP Model.- 9.2.2 Bottleneck Analysis.- 9.2.3 Selection of Key-Processes.- 9.3 Chromosome Configuration.- 9.3.1 Operational Parameters for GA Cycles.- 9.4 GA Application for ETPSP.- 9.4.1 Case 1: Two-product ETPSP.- 9.4.2 Case 2: Multi-product ETPSP.- 9.4.3 Case 3: MOGA Approach.- 9.5 Concluding Remarks.- 10. Genetic Algorithms in Communication Systems.- 10.1 Virtual Path Design in ATM.- 10.1.1 Problem Formulation.- 10.1.2 Average packet delay.- 10.1.3 Constraints.- 10.1.4 Combination Approach.- 10.1.5 Implementation.- 10.1.6 Results.- 10.2 Mesh Communication Network Design.- 10.2.1 Design of Mesh Communication Networks.- 10.2.2 Network Optimization using GA.- 10.2.3 Implementation.- 10.2.4 Results.- 10.3 Wireles Local Area Network Design.- 10.3.1 Problem Formulation.- 10.3.2 Multiobjective HGA Approach.- 10.3.3 Implementation.- 10.3.4 Results.- Appendix A.- Appendix B.- Appendix C.- Appendix D.- Appendix E.- Appendix F.- References.

The practical application of genetic algorithms to the solution of engineering problems, has rapidly become an established approach in the fields of control and signal processing. Genetic Algorithms provides comprehensive coverage of the techniques involved, describing the intrinsic characteristics, advantages and constraints of genetic algorithms, as well as discussing genetic operations such as crossover, mutation and reinsertion. In addition, the principle of multiobjective optimization and computing parallelism are discussed. The use of genetic algorithms in many areas of interest in control and signal processing is detailed; among the areas of application are:

• filtering;

• H-infinity control;

• speech recognition;

• production planning and scheduling;

• computational intelligence; and

• communication systems.

Also described is an original hierarchical genetic algorithm designed to address the problems in determining system topology.

The authors provide "A Game of Genetic Creatures", a fundamental study for GA based on computer-generated insects to demonstrate some of the ideas developed in the text as a download available from www.springer.com/1-85233-072-4.

 

This superb book is suitable for readers from a wide range of disciplines.

Assembly Automation

This is a well-written engineering textbook. Genetic algorithms are properly explained and well motivated. The engineering examples illustrate the power of application of genetic algorithms.

Journal of the American Statistical Association

The book is a good contribution to the genetic algorithm area from an applied point of view. It should be read by engineers, undergraduate or postgraduate students and researchers.

International Journal of Adaptive Control and Signal Processing

Man, K. F. Man, City University of Hong Kong.... więcej >
Tang, K. S. Tang, City University of Hong Kong.... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia