ISBN-13: 9783540418061 / Angielski / Miękka / 2001 / 410 str.
ISBN-13: 9783540418061 / Angielski / Miękka / 2001 / 410 str.
A famous saying (due toHerriot)definescultureas "what remainswhen everythingisforgotten ." One couldparaphrase thisdefinitionin statingthat generalizedconvexity iswhat remainswhen convexity has been dropped . Of course, oneexpectsthatsome convexityfeaturesremain.For functions, convexity ofepigraphs(what is above thegraph) is a simplebut strong assumption.It leads tobeautifulpropertiesand to a field initselfcalled convex analysis. In several models, convexity is not presentandintroducing genuine convexityassumptionswouldnotberealistic. A simple extensionof thenotionof convexity consists in requiringthatthe sublevel sets ofthe functionsare convex (recall thata sublevel set offunction a is theportionof thesourcespaceon which thefunctiontakesvalues below a certainlevel).Its first use is usuallyattributed to deFinetti, in 1949. This propertydefinesthe class ofquasiconvexfunctions, which is much larger thanthe class of convex functions: a non decreasingor nonincreasingone variablefunctionis quasiconvex, as well asanyone-variable functionwhich is nonincreasingon someinterval(-00, a] or(-00, a) and nondecreasingon its complement.Many otherclasses ofgeneralizedconvexfunctionshave been introduced, often fortheneeds ofvariousapplications: algorithms, economics, engineering, management science, multicriteria optimization, optimalcontrol, statistics .Thus, theyplay animportantrole in severalappliedsciences . A monotonemappingF from aHilbertspace to itself is a mappingfor which the angle between F(x) - F(y) and x- y isacutefor anyx, y. It is well-known thatthegradientof a differentiable convexfunctionis monotone.The class of monotonemappings(and theclass ofmultivaluedmonotoneoperators) has remarkableproperties.This class has beengeneralizedin various direc tions, withapplicationsto partialdifferentialequations, variationalinequal ities, complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans.