• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Fundamentals of Heat Exchanger Design » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Fundamentals of Heat Exchanger Design

ISBN-13: 9781119883265 / Angielski

Dusan P. Sekulic; Ramesh K. Shah
Fundamentals of Heat Exchanger Design Dusan P. Sekulic Ramesh K. Shah 9781119883265 John Wiley & Sons Inc - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Fundamentals of Heat Exchanger Design

ISBN-13: 9781119883265 / Angielski

Dusan P. Sekulic; Ramesh K. Shah
cena 580,55
(netto: 552,90 VAT:  5%)

Najniższa cena z 30 dni: 579,35
Termin realizacji zamówienia:
ok. 30 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Fundamentals of Heat Exchanger Design A cutting-edge update to the most essential single-volume resource on the market Heat exchangers are thermal devices which transfer heat between two or more fluids. They are integral to energy, automotive, aerospace, and myriad other technologies. The design and implementation of heat exchangers is an essential skill for engineers looking to contribute to a huge range of applications. Fundamentals of Heat Exchanger Design, Second Edition provides a comprehensive insight into the design and performance of heat exchangers. After introducing the basic heat transfer concepts and parameters, an overview of design methodologies is discussed. Subsequently, details of design theory of various types of exchangers are presented. The first edition established itself as the standard single-volume text on the subject. The second edition preserves an established in-depth approach but reflects some new technological developments related to design for manufacturing compact heat exchangers, including novel 3-D printing approaches to heat exchanger design. Readers of the second edition of Fundamentals of Heat Exchanger Design will also find: A new section on the design for manufacturing of compact heat exchangers A new section on design for additive manufacturing compact heat exchangers Detailed discussions of the design of recuperators and regenerators, pressure drop analysis, geometric parameters, heat transfer correlations, and more Fundamentals of Heat Exchanger Design is ideal for practicing engineers, as well as for advanced undergraduate and graduate students in mechanical and aerospace engineering, energy engineering, and related subjects.

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Mechanical
Technology & Engineering > Construction - Heating, Ventilation & Air Conditioning
Technology & Engineering > Materials Science - General
Wydawca:
John Wiley & Sons Inc
Język:
Angielski
ISBN-13:
9781119883265

PrefaceNomenclature1 Heat Exchangers: Semantics1.1 Heat Transfer in a Heat Exchanger1.1.1 Heat Exchanger as a Part of a System1.1.2 Heat Exchanger as a Component1.2 Modelling a Heat Exchanger1.2.1 Temperature Distributions in Counterflow and Parallel flow1.2.2 True Meaning of the Heat Exchanger Effectiveness1.2.3 Temperature Difference Distributions1.2.4 Temperature Distributions in Crossflow Exchangers1.3 Irreversibility in Heat Exchangers1.3.1 Entropy Generation Caused by Finite Temperature Differences1.3.2 Entropy Generation Associated with Fluid Mixing1.3.3 Entropy Generation Caused by Fluid Friction1.4 Thermodynamic Irreversibility and Temperature Cross Phenomena1.4.1 Maximum Entropy Generation1.4.2 External Temperature Cross and Fluid Mixing Analogy1.4.3 Thermodynamic Analysis for 1-2 TEMA J Shell and Tube Exchanger1.5 Heuristic Approach to an Assessment of Heat Exchanger Effectiveness1.6 Energy, Exergy and Cost Balances in the Analysis of Heat Exchangers1.6.1 Temperature-Enthalpy Rate Change Diagram1.6.2 Analysis Based on an Energy Rate Balance1.6.3 Analysis Based on Energy/Enthalpy and Cost Rate Balancing1.6.4 Analysis Based on an Exergy Rate Balance1.6.5 Thermodynamic Figure of Merit for Assessing Exchanger Performance1.6.6 Accounting for the Cost of Exergy Losses in a Heat Exchanger1.7 Performance Evaluation Criteria Based on the Second Law of ThermodynamicsReferences2 Overview of Heat Exchanger Design Methodology: The Art2.1 Heat Exchanger Design Methodology2.1.1 Process and Design Specifications2.1.2 Thermal and Hydraulic Design2.1.3 Mechanical Design2.1.4 Manufacturing Considerations and Cost Estimates2.1.5 Trade-off Factors2.1.6 Optimum Design2.1.7 Other Considerations2.2 Interactions Among Design Considerations2.3 Design Heat Exchangers for Manufacturing2.3.1 Brazed Heat Exchangers2.3.2 Additive Manufacturing Heat Exchangers (3-D Printing)References3 Thermal Design Theory for Recuperators3.1 Heat Flow and Thermal Resistance3.2 Heat Exchanger Design Variables/Parameters3.2.1 Assumptions for Heat Exchanger Analysis3.2.2 Problem Formulation3.2.3 Definitions of Dimensional Variables3.2.4 Thermal Size and UA3.3 The epsilon-NTU Method3.3.1 Heat Exchanger Effectiveness epsilon3.3.2 Heat Capacity Rate Ratio C* 3.3.3 Number of Transfer Units NTU3.4 Effectiveness - NTU Relationships3.4.1 Single-Pass Exchangers/Counterflow Exchangers3.4.2 Exchangers with Other Flow Arrangements3.4.3 Interpretation of -NTU Results3.4.4 Stream Symmetry3.5 The P-NTU Method3.5.1 Temperature Effectiveness P3.5.2 Number of Transfer Units, NTU3.5.3 Heat Capacity Rate Ratio R3.5.4 General P-NTU Functional Relationship3.6 P-NTU Relationships3.6.1 Parallel Counterflow Exchanger, Shell Fluid Mixed, 1-2TEMA E Shellass Exchangers3.7 The Mean Temperature Difference Method3.7.1 Log-Mean Temperature Difference, LMTD3.7.2 Log-Mean Temperature Difference Correction Factor F3.8 F Factors for Various Flow Arrangements3.8.1 Counterflow Exchanger3.8.2 Parallelflow Exchanger3.8.3 Other Basic Flow Arrangements3.8.4 Heat Exchanger Arrays and Multipassing3.9 Comparison of the epsilon-NTU, P-NTU, and MTD Methods3.9.1 Solutions to the Sizing and Rating Problems3.9.2 The epsilon-NTU Method Revisited3.9.3 The P-NTU Method Revisited3.9.4 The MTD Method Revisited3.10 The and P1-P2 Methods3.10.1 The Method3.10.2 The P1-P2 Method3.11 Solution Methods for Determining Exchanger Effectiveness3.11.1 Exact Analytical Methods3.11.2 Approximate Methods3.11.3 Numerical Methods3.11.4 Matrix Formalism3.11.5 Chain Rule Methodology3.11.6 Flow-Reversal Symmetry3.11.7 Rules for the Determination of Exchanger Effectivenesswith One Fluid Mixed3.12 Heat Exchanger Design ProblemsReferences4 Relaxation of Selected Design Assumptions. Extended SUrfaces4.1 Longitudinal Wall Heat Conduction Effects4.1.1 Exchangers with C* = 04.1.2 Single-Pass Counterflow Exchanger4.1.3 Single-Pass Parallelflow Exchanger4.1.4 Single-Pass Unmixed-Unmixed Crossflow Exchanger4.1.5 Other Single-Pass Exchangers4.1.6 Multipass Exchangers4.2 Nonuniform Overall Heat Transfer Coefficients4.2.1 Temperature Effect4.2.2 Length Effect4.2.3 Combined Effect4.3 Additional Considerations for Extended Surface Exchangers4.3.1 Thin Fin Analysis4.3.2 Fin Efficiency4.3.3 Fin Effectiveness4.3.4 Extended Surface Efficiency4.4 Additional Considerations for Shell-and-Tube Exchangers4.4.1 Shell Fluid Bypassing and Leakage4.4.2 Unequal Heat Transfer Area in Individual Exchanger Passes4.4.3 Finite Number of Baffles4.5 Flow Maldistribution4.5.1 Geometry-induced Flow Maldistribution4.5.2 Operating Condition-induced Flow Maldistribution4.5.3 Mitigation of Flow MaldistributionReferences5 Thermal Design Theory for Regenerators5.1 Heat Transfer Analysis5.1.1 Assumptions for Regenerator Heat Transfer Analysis5.1.2 Definitions and Description of Important Parameters5.1.3 Governing Equations5.2 The epsilon-NTUo Method5.2.1 Dimensionless Groups5.2.2 Influence of Core Rotation and Valve Switching Frequency5.2.3 Convection Conductance Ratio (hA)* 5.2.4 epsilon -NTUo Results for a Counterflow Regenerator5.2.5 epsilon -NTUo Results for a Parallelflow Regenerator5.3 The Method5.3.1 Comparison of the epsilon -NTUo and Methods5.3.2 Solutions for a Counterflow Regenerator5.3.3 Solution for a Parallelflow Regenerator5.4 Influence of Longitudinal Wall Heat Conduction5.5 Influence of Transverse Wall Heat Conduction5.5.1 Simplified Theory5.6 Influence of Pressure and Carryover Leakages5.6.1 Modeling of Pressure and Carryover Leakages for a RotaryRegenerator5.7 Influence of Matrix Material, Size, and ArrangementReferences6 Heat Exchanger Pressure Drop Analysis6.1 Introduction6.1.1 Importance of Pressure Drop6.1.2 Fluid Pumping Devices6.1.3 Major Contributions to the Heat Exchanger Pressure Drop6.1.4 Assumptions for Pressure Drop Analysis6.2 Extended Surface Heat Exchanger Pressure Drop6.2.1 Plate-Fin Heat Exchangers6.2.2 Tube-Fin Heat Exchangers6.3 Regenerator Pressure Drop6.4 Tubular Heat Exchanger Pressure Drop6.4.1 Tube Banks6.4.2 Shell-and-Tube Exchangers6.5 Plate Heat Exchanger Pressure Drop6.6 Pressure Drop Associated with Fluid Distribution Elements6.6.1 Pipe Losses6.6.2 Sudden Expansion and Contraction Losses6.6.3 Bend Losses6.7 Pressure Drop Presentation6.7.1 Nondimensional Presentation of Pressure Drop Data6.7.2 Dimensional Presentation of Pressure Drop Data6.8 Pressure Drop Dependence on Geometry and Fluid PropertiesReferences7 Surface Heat Transfer and Flow Friction Characteristics7.1 Basic Concepts7.1.1 Boundary Layers7.1.2 Types of Flows7.1.3 Free and Forced Convection7.1.4 Basic Definitions7.2 Dimensionless Groups7.2.1 Fluid Flow7.2.2 Heat Transfer 4467.2.3 Dimensionless Surface Characteristics as a Function of the Reynolds Number7.3 Experimental Techniques for Determining Surface Characteristics7.3.1 Steady-State Kays and London Technique7.3.2 Wilson Plot Technique7.3.3 Transient Test Techniques7.3.4 Friction Factor Determination7.4 Analytical and Semiempirical Heat Transfer and Friction Factor Correlations for Simple Geometries7.4.1 Fully Developed Flows7.4.2 Hydrodynamically Developing Flows7.4.3 Thermally Developing Flows7.4.4 Simultaneously Developing Flows7.4.5 Extended Reynolds Analogy7.4.6 Limitations of j vs. Re Plot7.5 Experimental Heat Transfer and Friction Factor Correlations for Complex Geometries7.5.1 Tube Bundles7.5.2 Plate Heat Exchanger Surfaces7.5.3 Plate-Fin Extended Surfaces7.5.4 Tube-Fin Extended Surfaces7.5.5 Regenerator Surfaces7.6 Influence of Temperature-Dependent Fluid Properties7.6.1 Correction Schemes for Temperature-Dependent Fluid Properties7.7 Influence of Superimposed Free Convection7.7.1 Horizontal Circular Tubes7.7.2 Vertical Circular Tubes7.8 Influence of Superimposed Radiation7.8.1 Liquids as Participating Media7.8.2 Gases as Participating MediaReferences8 Geometry of Heat Exchanger's Surfaces8.1 Tubular Heat Exchangers8.1.1 Inline Arrangement8.1.2 Staggered Arrangement8.2 Tube-Fin Heat Exchangers8.2.1 Circular Fins on Circular Tubes8.2.2 Plain Flat Fins on Circular Tubes8.2.3 General Geometric Relationships for Tube-Fin Exchangers8.3 Plate-Fin Heat Exchangers8.3.1 Offset Strip Fin Exchanger8.3.2 Corrugated Louver Fin Exchanger8.3.3 General Geometric Relationships for Plate-Fin Surfaces8.4 Regenerators with Continuous Cylindrical Passages8.4.1 Triangular Passage Regenerator8.5 Shell-and-Tube Exchangers with Segmental Baffles8.5.1 Tube Count8.5.2 Window and Crossflow Section Geometry8.5.3 Bypass and Leakage Flow Area8.6 Gasketed Plate Heat ExchangersReferences9 Heat Exchanger Design Procedures9.1 Fluid Mean Temperatures9.1.1 Heat Exchangers with9.1.2 Counterflow and Crossflow Heat Exchangers9.1.3 Multipass Heat Exchangers9.2 Plate-Fin Heat Exchangers9.2.1 Rating Problem9.2.2 Sizing Problem9.3 Tube-Fin Heat Exchangers9.3.1 Surface Geometries9.3.2 Heat Transfer Calculations9.3.3 Pressure Drop Calculations9.3.4 Core Mass Velocity Equation9.4 Plate Heat Exchangers9.4.1 Limiting Cases for the Design9.4.2 Uniqueness of a PHE for Rating and Sizing9.4.3 Rating a PHE9.4.4 Sizing a PHE9.5 Shell-and-Tube Heat Exchangers9.5.1 Heat Transfer and Pressure Drop Calculations9.5.2 Rating Procedure9.5.3 Approximate Design Method9.5.4 More Rigorous Thermal Design Method9.6 Note on Heat Exchanger OptimizationReferences10 Selection of Heat Exchangers and Their Components10.1 Selection Criteria Based on Operating Parameters10.1.1 Operating Pressures and Temperatures10.1.2 Cost10.1.3 Fouling and Cleanability10.1.4 Fluid Leakage and Contamination10.1.5 Fluids and Material Compatibility10.1.6 Fluid Type10.2 General Selection Guidelines for Major Exchanger Types10.2.1 Shell-and-Tube Exchangers10.2.2 Plate Heat Exchangers10.2.3 Extended-Surface Exchangers10.2.4 Regenerator Surfaces10.3 Some Quantitative Considerations10.3.1 Screening Methods10.3.2 Performance Evaluation Criteria10.3.3 Evaluation Criteria Based on the Second Law of Thermodynamics10.3.4 Selection Criterion Based on Cost EvaluationReferences

Dusan P. Sekulic is a professor at the University of Kentucky College of Engineering. His work has been featured in over 200 publications, and he has authored or co-authored three previous books.Ramesh K. Shah worked as a research professor at the Rochester Institute of Technology, as well as a senior staff research scientist at Delphi Harrison Thermal Systems and General Motors Corporation. He has authored and contributed to countless journal articles, books, conference papers, and more.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia