ISBN-13: 9781394163212 / Angielski / Inna / 2023
ForewordPrefaceAcknowledgmentsChapter 1: Introduction1.1 Electric Propulsion Background1.2 Electric Thruster Types1.3 Electrostatic Thrusters1.3.1 Ion Thrusters1.3.2 Hall Thrusters1.4 Electromagnetic Thrusters1.4.1 Magnetoplasmadynamic Thrusters1.4.2 Pulsed Plasma Thrusters1.4.3 Pulsed Inductive Thrusters1.5 Beam/Plume CharacteristicsReferencesChapter 2: Thruster Principles2.1 The Rocket Equation2.2 Force Transfer in Electric Thrusters2.2.1 Ion Thrusters2.2.2 Hall Thrusters2.2.3 Electromagnetic Thrusters2.3 Thrust2.4 Specific Impulse2.5 Thruster Efficiency2.6 Power Dissipation2.7 Neutral Densities and IngestionProblemsReferencesChapter 3: Basic Plasma Physics3.1 Introduction3.2 Maxwell's Equations3.3 Single Particle Motions3.4 Particle Energies and Velocities3.5 Plasma as a Fluid3.5.1 Momentum Conservation3.5.2 Particle Conservation3.5.3 Energy Conservation3.6 Diffusion in Partially Ionized Plasma3.6.1 Collisions3.6.2 Diffusion and Mobility Without a Magnetic Field3.6.3 Diffusion Across Magnetic Fields3.7 Sheaths at the Boundaries of Plasmas3.7.1 Debye Sheaths3.7.2 Pre-Sheaths3.7.3 Child-Langmuir Sheath3.7.4 Generalized Sheath Solution3.7.5 Double Sheaths3.7.6 Summary of Sheath EffectsProblemsReferencesChapter 4: Hollow Cathodes4.1 Introduction4.2 Cathode Configurations4.3 Thermionic Electron Emitters4.4 Insert Region4.5 Orifice Region4.6 Cathode Plume Region4.7 Heating and Thermal Models4.7.1 Hollow Cathode Heaters4.7.2 Heaterless Hollow Cathodes4.7.3 Hollow Cathode Thermal Models4.8 Hollow Cathode Life4.8.1 Dispenser Cathode Insert-Region Plasmas4.8.2 BaO Cathode Insert Temperature4.8.3 Barium Depletion Model4.8.4 Bulk-Material Insert Life4.8.5 Cathode Poisoning4.9 Keeper Wear and Life4.10 Discharge Behavior and Instabilities4.10.1 Discharge Modes4.10.2 Suppression of Instabilities and Energetic Ion Production4.10.3 Hollow Cathode Discharge CharacteristicsProblemsReferencesChapter 5: Ion Thruster Plasma Generators5.1 Introduction5.2 Idealized Ion Thruster Plasma Generator5.3 DC Discharge Ion Thrusters5.3.1 Generalized 0-D Ring-Cusp Ion Thruster Model5.3.2 Magnetic Multipole Boundaries5.3.3 Electron Confinement5.3.4 Ion Confinement at the Anode Wall5.3.5 Neutral and Primary Densities in the Discharge Chamber5.3.6 Ion and Excited Neutral Production5.3.7 Electron Temperature5.3.8 Primary Electron Density5.3.9 Power and Energy Balance in the Discharge Chamber5.3.10 Discharge Loss5.3.11 Discharge Stability5.3.12 Recycling Behavior5.3.13 Limitations of a 0-D Model5.4 Kaufman Ion Thrusters5.5 rf Ion Thrusters5.6 Microwave Ion Thrusters5.7 2-D Computer Models of the Ion ThrusterDischarge Chamber5.7.1 Neutral Atom Model5.7.2 Primary Electron Motion and Ionization Model5.7.3 Discharge Chamber Model ResultsProblemsReferencesChapter 6: Ion Thruster Accelerator Grids6.1 Grid Configurations6.2 Ion Accelerator Basics6.3 Ion Optics6.3.1 Ion Trajectories6.3.2 Perveance Limits6.3.3 Grid Expansion and Alignment6.4 Electron Backstreaming6.5 High Voltage Considerations6.5.1 Electrode Breakdown6.5.2 Molybdenum Electrodes6.5.3 Carbon-Carbon Composite Materials6.5.4 Pyrolytic Graphite6.5.5 Voltage Hold-off and Conditioning in Ion Accelerators6.6 Ion Accelerator Grid Life6.6.1 Grid Models6.6.2 Barrel Erosion6.6.3 Pits-and-Grooves ErosionProblemsReferencesChapter 7: Conventional Hall Thrusters7.1 Introduction7.1.1 Discharge Channel with Dielectric Walls (SPT)7.1.2 Discharge Channel with Metallic Walls (TAL)7.2 Operating Principles and Scaling7.2.1 Crossed-Field Structure and the Hall Current7.2.2 Ionization Length and Scaling7.2.3 Plasma Potential and Current Distributions7.3 Performance Models7.3.1 Thruster Efficiency Definitions7.3.2 Multiply-Charged Ion Correction7.3.3 Dominant Power Loss Mechanisms7.3.4 Electron Temperature7.3.5 Efficiency of Thrusters with Dielectric Walls7.3.6 Efficiency of TAL Thrusters Metallic Walls7.3.7 Comparison of Thrusters with Dielectric and Metallic Walls7.4 Discharge Dynamics and Oscillations7.5 Channel Physics and Numerical Modeling7.5.1 Basic Model Equations7.5.2 Numerical Modeling and Simulations7.6 Operational Life of Conventional Hall ThrustersProblemsReferencesChapter 8: Magnetically Shielded Hall Thrusters8.1 Introduction8.2 First Principles of Magnetic Shielding8.3 The Protective Capabilties of Magnetic Shielding8.3.1 Numerical Simulations8.3.2 Laboratory Experiments and Model Validation8.4 Magnetically Shielded Hall Thrusters withElectrically Conducting Walls8.5 Magnetic Shielding Low Power Hall Thrusters8.4 Remarks on Magnetic Shielding in Hall ThrustersReferencesChapter 9: Electromagnetic Thrusters9.1 Introduction9.2 Magnetoplasmadynamic (MPD) Thrusters9.2.1 Self Field MPD Thrusts9.2.2 Applied-Field MPD Thrusters9.2.3 Onset Phenomenon9.2.4 MPD Thruster Performance Parameters9.3 Ablative Pulsed Plasma Thrusters9.3.1 Thruster Configurations and Performance9.3.2 Physics and Modeling9.4 Pulsed Inductive Thrusters9.4.1 Thruster Performance9.4.2 Physics and ModelingReferencesChapter 10: Future Directions in Electric Propulsion10.1 Hall Thruster Developments10.1.1 Alternative Propellants10.1.2 Nested Channel Hall Thrusters for Higher Power10.1.3 Double Stage Ionization and Acceleration Regions10.1.4 Multipole Magnetic Fields in Hall Thrusters10.2 Ion Thruster Developments10.2.1 Alternative Propellants10.2.2 Grid Systems for High Specific Impulse10.3 Helicon Thruster Development10.4 Magnetic Field Dependent Thrusters10.4.1 Rotating Magnetic Field (RMF) Thrusters10.4.2 Magnetic Induction Plasma Thrusters10.4.3 Magnetic Reconnection Thrusters10.5 Laser-Based Propulsion10.6 Solar Sails10.7 Hollow Cathode Discharge ThrustersReferencesChapter 11: Thruster Plumes and Spacecraft Interactions1.1 Introduction11.2 Plume Physics in Ion and Hall Thrusters11.2.1 Plume Measurements11.2.2 Flight Data11.2.3 Laboratory Plume Measurements11.3 Plume Models for Ion and Hall Thrusters11.3.1 Primary Beam Expansion11.3.2 Neutral Gas Plumes11.3.3 Secondary-Ion Generation11.3.4 Combined Models and Numerical Simulations11.4 Spacecraft Interactions11.4.1 Momentum of the Plume Particles11.4.2 Sputtering and Contamination11.4.3 Plasma Interactions with Solar Arrays11.5 Interactions with Payloads11.5.1 Microwave Phase Shift11.5.2 Plume Plasma Optical EmissionProblemsReferencesChapter 12: Flight Electric Thrusters12.1 Introduction12.2 Ion Thrusters12.3 Hall Thrusters12.4 Electromagnetic ThrustersReferencesAppendicesA: NomenclatureB: Gas Flow Unit Conversions and CathodePressure EstimatesC: Energy Loss by ElectronsD: Ionization and Excitation Cross Sections forXenon and KryptonE: Ionization and Excitation Reaction Rates inMaxwellian PlasmasF: Electron Relaxation and Thermalization TimesG: Clausing Factor Monte Carlo Calculation
Dan M. Goebel, PhD, is a Fellow and Senior Research Scientist at the Jet Propulsion Laboratory, as well as an Adjunct Professor of Electrical Engineering and Aerospace Engineering at UCL. He is also a Fellow of the IEEE, the National Academy of Inventors, and the American Physical Society.Ira Katz, PhD, is retired from a position as leader of the Jet Propulsion Laboratory's Advanced Propulsion Technology Group and a global research leader in ion thruster and hollow cathode physics. He previously worked as Chief Scientist of the Applied Sciences Division of SAIC, Inc., and managed the company's Space group.Ioannis G. Mikellides [insert information]
1997-2025 DolnySlask.com Agencja Internetowa