ISBN-13: 9783642752131 / Angielski / Miękka / 2014 / 624 str.
ISBN-13: 9783642752131 / Angielski / Miękka / 2014 / 624 str.
Silvology is the general science of forest ecosystems, without the usual division between Man and Nature. This systematic treatment of forests intends to integrate and harmonize existing approaches with the help of systems modeling in a hierarchy of close system levels, according to criteria of biological architecture, biomass production and species composition. Scientists and practitioners will appreciate this synoptic treatment of forests and their ecology, allowing the balance of holistic and reductionist viewpoints, and the placement of phenomena and techniques. Topics covered include: - introduction of the methods, - sections on forest organisms, - a special chapter on trees, - eco-units, i.e. forest ecosystems developing after some zero-event like fire, storm or waterlogging, - silvatic mosaics built by the eco-units of different size, architecture and species composition, - a summary of silvological rules determining system's behaviour at every level, e.g. fragmentation and fusion, transfer of functions, irreversibility and process oscillation.
First Part: Introductory Matter — Summary.- 1 The Forester as a Green Designer.- 1.1 Forestry is Not Self-Evident.- 1.2 Silviculture.- 1.3 Silvology.- 2 Build-Up and Use of Theories.- 2.1 Some Concepts.- 2.2 Criteria for Modelling.- 2.3 The Choice of Systems: A Game Without Frontiers?.- 2.3.1 Limits.- 2.3.2 Grids, Pixels and Power of Resolution.- 2.3.3 Ground Truth.- 2.3.4 The Eye and the Natural Limits.- 2.4 Hierarchies.- 2.4.1 Added Information.- 2.4.2 Components and Compartments.- 2.4.3 Disturbance and the Role of Hazard.- 2.4.4 Examples of Hierarchies.- 2.4.4.1 Continuity of Criteria.- 2.4.4.2 Use of Numerous Levels.- 2.4.4.3 Architecture as the Prime Criterion.- 2.4.4.4 Intentional Omission of Levels.- 2.4.4.5 Precision of Limits.- 2.4.4.6 Flexibility and Completeness.- Second Part: Forest Components — Summary.- 3 Trees.- 3.1 What Is a Tree?.- 3.2 The Life Cycle of Trees: Architecture.- 3.2.1 The Seedling Period.- 3.2.2 The Model-Conform Period.- 3.2.3 Metamorphosis and Programmed Adaptation.- 3.2.4 Reiteration and Opportunistic Adjustment.- 3.3 The Life Cycle of Trees: Root Architecture.- 3.3.1 Architectural Criteria in Root Growth.- 3.3.2 Seedling Roots.- 3.3.3 Roots in Model-Conform Trees.- 3.3.4 Roots in Metamorphosing Trees.- 3.3.5 Roots in Reiterating Trees.- 3.3.6 Specialised Roots.- 3.4 Application of Architectural Tree Properties.- 3.4.1 Provoking Reiteration for Shoot Production.- 3.4.1.1 Coppicing.- 3.4.1.2 Pollarding.- 3.4.1.3 Lopping.- 3.4.1.4 Pruning, Clipping, Trimming.- 3.4.2 Provoking Reiteration for Vegetative Multiplication.- 3.4.2.1 Cuttings.- 3.4.2.2 Grafting.- 3.4.2.3 Layering or Marcotting.- 3.4.2.4 Root Suckers.- 3.5 The Life Cycle of Trees: Energy and Nutrients.- 3.5.1 Concepts.- 3.5.2 Production Systems and Functions.- 3.5.3 Production and Function of Organs and Tissues.- 3.5.4 The Sapstream.- 3.5.5 Stimulation, Stress and Sapstream Feedbacks.- 3.5.6 Cambial Activity: A Parameter for Vitality and Production.- 3.6 The Life Cycle of Trees: Cycles and Variants.- 3.6.1 The Backman Theory.- 3.6.2 Modulated Life Cycle Curves.- 3.7 The Life Cycle of Trees: Proportional Diagnosis.- 3.8 The Life Cycle of Trees: Populations.- 3.8.1 Trees as Populations of Organs or Crownlets.- 3.8.2 Some Definitions.- 3.8.3 Transfer of Functions.- 3.9 Between Trees and Forests.- 4 Forest Components Other Than Trees.- 4.1 Introduction: The Trees and the Others.- 4.2 Shrubs.- 4.3 Herbs.- 4.4 Lianes.- 4.5 Epiphytes.- 4.6 Monocotyledons.- 4.6.1 Architecture of Monocotyledons.- 4.6.2 Production in Monocotyledons.- 4.6.3 Ratios and Proportions in Monocotyledons.- 4.6.4 Some Monocotyledonous Groups Important for Silviculture.- 4.7 Cryptogamous Plants.- 4.8 Animals.- 4.8.1 General Characteristics and Ecological Functioning.- 4.8.2 Mammals.- 4.8.3 Birds.- 4.8.4 Reptiles, Amphibians and Fish.- 4.8.5 Insects and Other Arthropodes.- 4.8.6 Worms.- 4.9 Between Forests and Non-Arborescent Components.- Third Part: Forest Ecosystems — Summary.- 5 Forest Eco-Units.- 5.1 What are Forest Eco-Units?.- 5.1.1 Elements of Definition.- 5.1.2 Spatial Limits and Gradients.- 5.1.3 Temporal Limits and the Zero-Event.- 5.1.4 Eco-Units Are Not Necessarily Even-Aged.- 5.1.5 Eco-Units Are Living Systems but Not Organisms.- 5.1.6 Eco-Units and Silvicultural Design.- 5.1.7 The Behaviour of Forest Eco-Units.- 5.2 Development of Forest Eco-Units: Architecture.- 5.2.1 General Remarks.- 5.2.2 The Innovation Phase.- 5.2.3 The Aggradation Phase.- 5.2.4 The Biostatic Phase.- 5.2.4.1 Overview.- 5.2.4.2 The Trees.- 5.2.4.3 Components Other Than Trees.- 5.2.5 The Degradation Phase.- 5.2.5.1 Overview.- 5.2.5.2 Dynamics Explained.- 5.2.5.3 The Zero-Events.- 5.2.6 Clinical Death of Eco-Units, Size, Succession.- 5.3 The Life Cycle of Forest Eco-Units: Root Compartment.- 5.3.1 Architecture and Horizons.- 5.3.2 Root Occupation Patterns.- 5.3.3 Root Floors.- 5.3.4 The Edaphon and its Compartments.- 5.3.4.1 Mycorrhizae.- 5.3.4.2 Other Fungi.- 5.3.4.3 Bacteria.- 5.3.4.4 Soil Fauna.- 5.3.5 Phasic Development of Eco-Unit Root Compartments.- 5.4 Examples of Eco-Units of Different Size and Nature.- 5.4.1 Large Eco-Units.- 5.4.1.1 Treeless Innovation Phase near Montpellier (France).- 5.4.1.2 Planted Early Aggradation Phase (the Netherlands).- 5.4.1.3 Aggrading and Degrading Eco-Units (the Netherlands).- 5.4.1.4 Late Innovation Phases, Humid Tropics (Guyanas).- 5.4.1.5 Late Aggrading and Degrading Phases (Oyapock, Fr. Guyana).- 5.4.1.6 Large Tropical Eco-Unit Development (Manaüs, Brazil).- 5.4.1.7 Eco-Unit Development in Côte d’Ivoire.- 5.4.1.8 Fragmenting Eco-Unit in Papua New Guinea.- 5.4.2 Intermediate Eco-Units.- 5.4.2.1 Biostasis in Drier Climates (Côte d’Ivoire).- 5.4.2.2 Biostasis in Savanna Forest (Bor, Sudan).- 5.4.2.3 Aggrading Phase in Marsh Forest (Flevoland, the Netherlands).- 5.4.2.4 Biostasis at the Forest Limit (Colombian Andes).- 5.4.2.5 Pine Forest Development in the Appennines (Italy).- 5.4.2.6 Early Aggrading Phases in Alsatian Oak Forest (France).- 5.4.2.7 Late Aggrading Phase near the Rhine (the Netherlands).- 5.4.2.8 Eco-Units in Old-Growth Douglas-Fir Forest (USA).- 5.4.3 Small Eco-Units.- 5.4.3.1 Eco-Unit Development in Bialowieza (Poland).- 5.4.3.2 Small Windthrow in Douglas Fir Plantation (the Netherlands).- 5.4.3.3 Eco-Unit Development in Tropical Rainforest (Suriname).- 5.4.3.4 Eco-Units in a Dipterocarp Plantation (Indonesia).- 5.4.3.5 Eco-Units in Tai Forest (Côte d’Ivoire).- 5.4.3.6 Eco-Units in a Mixed Hardwood Forest (France).- 5.4.3.7 Eco-Units in Mixed Central European Forests.- 5.4.3.8 Eco-Units in Coniferous Japanese Mountain Forests.- 5.4.3.9 Eco-Units in Fragmenting Oak Forests (Austria).- 5.4.3.10 Eco-Unit Borders (Antilles).- 5.4.3.11 Fusion of Small Eco-Units in Beech Forest (the Netherlands).- 5.4.3.12 Fused Small Eco-Units in Japanese Beech Forest.- 5.4.4 Why Were These Examples Chosen?.- 5.5 Systems Analysis of Forest Eco-Units: The Compartments.- 5.5.1 What is a Compartment?.- 5.5.2 Populations as Compartments.- 5.5.3 Biological Types (Life Forms) as Compartments.- 5.5.4 Examples of Population and Life Form Analysis.- 5.5.5 Compartments in Classical Vegetation Science.- 5.5.6 Synusiae as Compartments.- 5.5.7 Hoplexols and Transdisciplinary Language.- 5.5.8 Guilds as Compartments.- 5.5.9 Cohorts as Compartments.- 5.5.10 Connexus and the Ecological Interaction Fabric.- 5.5.11 Tree Compartments and Tree Temperament.- 5.6 The Life Cycle of Forest Eco-Units: Production Models.- 5.6.1 Concepts.- 5.6.2 Relation Diagram for an Eco-Unit.- 5.6.3 Evaluation of Silvicultural Measures.- 5.6.4 Biomass Production and Biogeochemical Flows.- 5.6.5 Production Models: Some Principles and Examples.- 5.6.6 Crop Models and Gap Models.- 5.6.7 Computer-Linkage Between Architectural and Biogeochemical Models.- 5.6.8 Ecological Impellors, Poisons, Chemosilviculture.- 5.6.9 Transfer of Ecological Functions.- 5.7 From Eco-Units to Silvatic Mosaics.- 6 Silvatic Mosaics.- 6.1 What Are Silvatic Mosaics?.- 6.1.1 Elements of Definition.- 6.1.2 Spatial Limits and Gradients. Succession.- 6.1.3 Temporal Limits and the Shifting Event.- 6.1.4 Silvicultural and Ecological “Normalcy”.- 6.1.5 Silvatic Mosaics Are Living Systems but Not Organisms.- 6.1.6 Behaviour of Silvatic Mosaics.- 6.2 The Life Cycle of Silvatic Mosaics: Architecture.- 6.2.1 Definitions of Eco-Units as Subsystems.- 6.2.2 The Installation Stage.- 6.2.2.1 Biotic Remanence.- 6.2.2.2 Biotic Reach of Propagules.- 6.2.2.3 Abiotic Impacts and Neo-Mosaics.- 6.2.2.4 Fragmentation.- 6.2.2.5 Eco-Unit Composition.- 6.2.2.6 Apparent Monotony of the Installation Stage.- 6.2.2.7 Stability of Mosaics Versus Eco-Unit Fluidity.- 6.2.3 The Precuilibrium Stage.- 6.2.3.1 Canopy Closure: Layers, Stufung and Schichtung.- 6.2.3.2 Eco-Unit Composition Throughout the Precuilibrium.- 6.2.3.3 The Precuilibrium, Animals and Fungi.- 6.2.3.4 The Precuilibrium and Silviculture.- 6.2.4 The Ecuilibrium Stage.- 6.2.4.1 Kaleidoscopic Balance in Eco-Unit Composition.- 6.2.4.2 Tree Species and Their Strategies.- 6.2.4.3 Succession and Silvigenetic Cycles.- 6.2.4.4 Large Animals and the Ecuilibrium.- 6.2.4.5 The Propagule Bank and the Ecuilibrium.- 6.2.4.6 Birds, Propagules and the Ecuilibrium.- 6.2.4.7 Significance for Nature Conservation and Silviculture.- 6.2.4.8 Flowering and Fruiting Periodicity: Mast Years.- 6.2.4.9 The Ecuilibrium Stage: Summary Outline.- 6.2.5 The Elimination Stage.- 6.2.5.1 Stress and Eco-Unit Elimination.- 6.2.5.2 Long-Lasting Stress: The Ulrich Model.- 6.2.5.3 The Elimination Stage: Final Remarks.- 6.2.6 The Stage of Collapse.- 6.2.7 Rhizospheres in Silvatic Mosaics.- 6.2.8 Examples of Silvatic Mosaics.- 6.2.8.1 The Broadleaved Forests at Fontainebleau, France.- 6.2.8.2 Pioneer Birch Mosaic, the Netherlands.- 6.2.8.3 Neo-Natural Mosaic Fragment, the Netherlands.- 6.2.8.4 Semi-Natural Mediterranean Silvatic Mosaics.- 6.2.8.5 Tropical Ecuilibrium Mosaic in the Andes, Ecuado.- 6.2.8.6 Tropical Floodplain Ecuilibrium Mosaic, Brazil.- 6.2.8.7 Ecuilibrium Mosaic Fragments, Southeast Asia.- 6.2.8.8 Eco-Unit Interaction in Ecuilibrium, Indonesia.- 6.2.8.9 Ecuilibrium Mosaic in African Rainforest, Zaire.- 6.3 The Life Cycle of Silvatic Mosaics: Populations and Succession.- 6.3.1 Concepts.- 6.3.2 Physiognomic, Descriptive Classifications.- 6.3.3 Physiognomy, Species, Dynamics: The Central European Model.- 6.3.4 Successional Models Using Species Composition.- 6.3.5 Physiognomic Structure and Mosaic Architecture.- 6.3.6 A Shifting Mosaic Matrix: The Torquebiau Calculation.- 6.3.7 Graphical Succession Models.- 6.3.8 Species Populations, Selection Pressure, Speciation.- 6.3.8.1 A Hierarchical Model of Selection Pressure.- 6.3.8.2 Species Conservation and Human Health Aspects.- 6.3.8.3 Speciation, Provenances, Tree Breeding.- 6.4 The Life Cycle of Silvatic Mosaics: Production Models.- 6.4.1 Relation Diagram for a Silvatic Mosaic.- 6.4.2 Mosaic Production and Average Tree Production.- 6.4.3 Methods of Compartmentalisation.- 6.4.4 Transfer of Functions in Silvatic Mosaics.- 6.4.5 Biogeochemical and Hydrological Cycles; Biomas.- 6.4.6 Light and Forest Photology.- 6.4.7 Site Quality and Productivity.- 6.5 Site Resource Distribution and Silvatic Mosaics.- 6.5.1 Biosphere Models.- 6.5.2 Models for Large Ecosystems and Landscape Ecology.- 6.5.3 Some Remarks on Altitudinal and Latitudinal Gradients.- 6.6 Preliminary Conclusion on Silvatic Mosaics.- 7 Some Important Silvological Rules.- 7.1 What Are Rules?.- 7.2 The Rules of Scale.- 7.3 The Rules of Fragmentation and Fusion.- 7.4 The Rules of Transfer of Functions.- 7.5 The Rules of Irreversibility and Process Oscillation.- 7.6 Use and Significance of These Rules.- References.
1997-2024 DolnySlask.com Agencja Internetowa