ISBN-13: 9781493963157 / Angielski / Miękka / 2016 / 816 str.
ISBN-13: 9781493963157 / Angielski / Miękka / 2016 / 816 str.
From the reviews:
"The book is illustrated with high-quality figures in both color and black and white. ... This book offers techniques from internationally recognized experts. Both novice and established scientists will find it extremely useful." (Omer Iqbal, Doody's Book Reviews, March, 2014)Part I: Steady-State Fluorescence Spectroscopy (SSFS)
1. How to Collect National Institute of Standards and Technology (NIST) Traceable Fluorescence Excitation and Emission Spectra
Adam Matthew Gilmore
2. Steady State Fluorescence Polarization/Anisotropy for the Study of Protein Interactions
Nicholas G. James and David M. Jameson
3. Quantitative Fluorescence Spectral Analysis of Protein Denaturation
Ivo H.M. van Stokkum and Sergey P. Laptenok
4. High-Pressure Fluorescence Applications
Mariano Dellarole and Catherine A. Royer
Part II: Time-Resolved Fluorescence Spectroscopy (TRFS)
5. Frequency Domain Fluorometry: Theory and Application
Carissa M. Vetromile and David M. Jameson
6. Polar Plot Representation of Time-Resolved Fluorescence
John Paul Eichorts, Kai wen Teng, and Robert M. Clegg
7. Ensemble and Single Molecule Detected Time Resolved FRET Methods in Studies of Protein Conformations and Dynamics
Tomer Orevi, Eitan Lerner, Gil Rahamim, Dan Amir, and Elisha Haas
8. MD + QM Correlations with Tryptophan Fluorescence Spectral Shifts and Lifetimes
Patrik R. Callis and Jose R. Tusell
9. Analysis of Time-Dependent Red Shifts in Fluorescence Emission from Tryptophan Residues in Proteins
Dmitri Toptygin
10. Global Analysis of Time-Resolved Fluorescence Data
Anatoli V. Digris, Eugene G. Novikov, Victor V. Skakun, and Vladimir V. Apanasovich
11. Nanometrology
David J.S. Birch and Philip Yip
12. Upconversion Spectrophotofluorometry
Arianna Biesso, Jianhua Xu, and Jay R. Knutson
13. Subpicosecond Kerr-Gate Spectrofluorometry
Sergey P. Laptenok, Patrick Nürnberger, Andras Lukacs, and Marten H. Vos
14. Photo-Induced Electron Transfer Modeling to Simulate Flavoprotein Fluorescence Decay
Nadtanet Nunthaboot, Kiattisak Lugsanangarm, Arthit Nueangaudom, Somsak Pianwanit, Sirirat Kokpol, and Fumio Tanaka
Part III: Fluorescent Probe Development (FPD)
15. Biosynthetic Incorporation of Trp Analogs in Proteins
Jaap Broos
16. Optimization of Fluorescent Proteins
Daphne S. Bindels, Joachim Goedhart, Mark A. Hink, Laura van Weeren, Linda Joosen, and Theodorus W.J. Gadella, Jr.
17. Monitoring Membrane Properties and Apoptosis Using Membrane Probes of the 3-Hydroxyflavone Family
Zeinab Darwich, Andrey S. Klymchenko, and Yves Mély
Part IV: Fluorescence Microscopy: Fluorescence Recovery After Photobleaching (FRAP)
18. Rectangle FRAP for Measuring Diffusion with a Laser Scanning Microscope
Ranhua Xiong, Hendrik Deschout, Jo Demeester, Stefaan C. De Smedt, and Kevin Braeckmans
Part V: Fluorescence Microscopy: Förster Resonance Energy Transfer Imaging (FRETim)
19. A Quantitative Protocol for Intensity-Based Live Cell FRET Imaging
Clemens F. Kaminski, Eric. J. Rees, and Gabriele S. Kaminski Schierle
Part VI: Fluorescence Microscopy: Fluorescence Lifetime Imaging (FLIM)
20. Widefield Fluorescence Lifetime Imaging with Multi-Anode Detectors
Roland Hartig, Yury Prokazov, Evgeny Turbin, and Werner Zuschratter
21. Global Analysis of FRET- FLIM Data in Live Plant Cells
Sergey P. Laptenok, Joris J. Snellenburg, Christoph A. Bücherl, Kai R. Konrad, and Jan Willem Borst
22. Time-Resolved Fluorescence Anisotropy Imaging
Klaus Suhling, James Levitt, and Pei-Hua Chung
23. Multi-Modal Fluorescence Imaging Spectroscopy
Martijn H.W. Stopel, Christian Blum, and Vinod Subramaniam
Part VII: Fluorescence Microscopy: Fluorescence Fluctuation Spectroscopy (FFS)
24. Application of Fluorescence Correlation Spectroscopy (FCS) to Measure the Dynamics of Fluorescent Proteins in Living Cells
Thomas Weidemann
25. Fluorescence Cross-Correlation Spectroscopy (FCCS) in Living Cells
Xiaoxiao Ma, Yong Hwee Foo, and Thorsten Wohland
26. Quantifying Lipid-Protein Interaction by Fluorescence Correlation Spectroscopy (FCS)
Ana M. Melo, Manuel Prieto, and Ana Coutinho
27. PET-FCS: Probing Rapid Structural Fluctuations of Proteins and Nucleic Acids by Single-Molecule Fluorescence Quenching
Markus Sauer and Hannes Neuweiler
28. Z-Scan Fluorescence Correlation Spectroscopy as a Tool for Diffusion Measurements in Planar Lipid Membranes
Tomáš Steinberger, Radek Macháň, and Martin Hof
29. Scanning Fluorescence Correlation Spectroscopy (SFCS) with a Scan Path Perpendicular to the Membrane Plane
Paul Müller, Petra Schwille, and Thomas Weidemann
30. Implementation and Application of Pulsed Interleaved Excitation for Dual-Color FCS and RICS
Jelle Hendrix and Don C. Lamb
31. Quantitative Study of Protein-Protein Interactions in Live Cell by Dual Color Fluorescence Lifetime Cross-Correlation Spectroscopy
Sergi Padilla-Parra, Nicolas Audugé, Maïté Coppey-Moisan, and Marc Tramier
32. Brightness Experiments
Patrick J. Macdonald, Jolene Johnson, Yan Chen, and Joachim D. Mueller
33. Global Analysis of Autocorrelation Functions and Photon Counting Distributions in Fluorescence Fluctuation Spectroscopy
Victor V. Skakun, Anatoli V. Digris, and Vladimir V. Apanasovich
34. Simulation of Autocorrelation Function and Photon Counting Distribution in Fluorescence Fluctuation Spectroscopy
Igor P. Shingaryov, Victor V. Skakun, and Vladimir V. Apanasovich
Part VIII: Fluorescence Microscopy: Single-Molecule Fluorescence Spectroscopy (smFS)
35. Single-Molecule Fluorescence of Nucleic Acids
Kaley McCluskey, Euan Shaw, Daniel A. Lafontaine, and J. Carlos Penedo
36. Photoswitchable Fluorescent Proteins for Superresolution Fluorescence Microscopy Above the Diffraction Limit of Light
Susana Rocha, Herlinde De Keersmaecker, Hiroshi Uji-i, Johan Hofkens, and Hideaki Mizuno
Reflecting the expanding field’s need for reliable protocols, Fluorescence Spectroscopy and Microscopy: Methods and Protocols offers techniques from a worldwide team of experts on this versatile and vital subject. The topics covered fall into four broad categories: steady-state fluorescence spectroscopy, time-resolved fluorescence spectroscopy, fluorescent probe development, and the various sub-categories of fluorescence microscopy, such as fluorescence recovery after photobleaching (FRAP), live cell FRET imaging (FRETim), fluorescence lifetime imaging (FLIM), fluorescence fluctuation spectroscopy (FFS), and single-molecule fluorescence spectroscopy (smFS). Written as a part of the popular Methods in Molecular Biology series, chapters include the kind of unambiguous detail and key implementation advice that proves essential for successful results.
Comprehensive and practical, Fluorescence Spectroscopy and Microscopy: Methods and Protocols aims to guide both ‘novice’ and established scientists toward furthering their research with these invaluable techniques.
1997-2025 DolnySlask.com Agencja Internetowa