• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Field Arithmetic » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Field Arithmetic

ISBN-13: 9783031280191 / Angielski

Michael D. Fried; Moshe Jarden
Field Arithmetic Michael D. Fried Moshe Jarden 9783031280191 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Field Arithmetic

ISBN-13: 9783031280191 / Angielski

Michael D. Fried; Moshe Jarden
cena 928,04 zł
(netto: 883,85 VAT:  5%)

Najniższa cena z 30 dni: 886,75 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania

This book uses algebraic tools to study the elementary properties of classes of fields and related algorithmic problems. The first part covers foundational material on infinite Galois theory, profinite groups, algebraic function fields in one variable and plane curves. It provides complete and elementary proofs of the Chebotarev density theorem and the Riemann hypothesis for function fields, together with material on ultraproducts, decision procedures, the elementary theory of algebraically closed fields, undecidability and nonstandard model theory, including a nonstandard proof of Hilbert's irreducibility theorem. The focus then turns to the study of pseudo algebraically closed (PAC) fields, related structures and associated decidability and undecidability results. PAC fields (fields K with the property that every absolutely irreducible variety over K has a rational point) first arose in the elementary theory of finite fields and have deep connections with number theory.This fourth edition substantially extends, updates and clarifies the previous editions of this celebrated book, and includes a new chapter on Hilbertian subfields of Galois extensions. Almost every chapter concludes with a set of exercises and bibliographical notes. An appendix presents a selection of open research problems.Drawing from a wide literature at the interface of logic and arithmetic, this detailed and self-contained text can serve both as a textbook for graduate courses and as an invaluable reference for seasoned researchers.

This book uses algebraic tools to study the elementary properties of classes of fields and related algorithmic problems. The first part covers foundational material on infinite Galois theory, profinite groups, algebraic function fields in one variable and plane curves. It provides complete and elementary proofs of the Chebotarev density theorem and the Riemann hypothesis for function fields, together with material on ultraproducts, decision procedures, the elementary theory of algebraically closed fields, undecidability and nonstandard model theory, including a nonstandard proof of Hilbert's irreducibility theorem. The focus then turns to the study of pseudo algebraically closed (PAC) fields, related structures and associated decidability and undecidability results. PAC fields (fields K with the property that every absolutely irreducible variety over K has a rational point) first arose in the elementary theory of finite fields and have deep connections with number theory.This fourth edition substantially extends, updates and clarifies the previous editions of this celebrated book, and includes a new chapter on Hilbertian subfields of Galois extensions. Almost every chapter concludes with a set of exercises and bibliographical notes. An appendix presents a selection of open research problems. Drawing from a wide literature at the interface of logic and arithmetic, this detailed and self-contained text can serve both as a textbook for graduate courses and as an invaluable reference for seasoned researchers.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Algebra - General
Mathematics > Geometria - Algebraiczna
Mathematics > Algebra - Abstrakcyjna
Wydawca:
Springer
Seria wydawnicza:
Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. 3. Folge /
Język:
Angielski
ISBN-13:
9783031280191

1 Infinite Galois Theory and Profinite Groups.- 2 Valuations.- 3 Linear Disjointness.- 4 Algebraic Function Fields of One Variable.- 5 The Riemann Hypothesis for Function Fields.- 6 Plane Curves.- 7 The Chebotarev Density Theorem.- 8 Ultraproducts.- 9 Decision Procedures.- 10 Algebraically Closed Fields.- 11 Elements of Algebraic Geometry.- 12 Pseudo Algebraically Closed Fields.- 13 Hilbertian Fields.- 14 The Classical Hilbertian Fields.- 15 The Diamond Theorem.- 16 Nonstandard Structures.- 17 The Nonstandard Approach to Hilbert’s Irreducibility Theorem.- 18 Galois Groups over Hilbertian Fields.- 19 Small Profinite Groups.- 20 Free Profinite Groups.- 21 The Haar Measure.- 22 Effective Field Theory and Algebraic Geometry.- 23 The Elementary Theory of ����-Free PAC Fields.- 24 Problems of Arithmetical Geometry.- 25 Projective Groups and Frattini Covers.- 26 PAC Fields and Projective Absolute Galois Groups.- 27 Frobenius Fields.- 28 Free Profinite Groups of Infinite Rank.- 29 Random Elements in Profinite Groups.- 30 Omega-free PAC Fields.- 31 Hilbertian Subfields of Galois Extensions.- 32 Undecidability.- 33 Algebraically Closed Fields with Distinguished Automorphisms.- 34 Galois Stratification.- 35 Galois Stratification over Finite Fields.- 36 Problems of Field Arithmetic.

Michael D. Fried received his PhD in Mathematics from the University of Michigan in 1967. After postdoctoral research at the Institute for Advanced Study (1967–1969), he became professor at Stony Brook University (8 years), the University of California at Irvine (26 years), the University of Florida (3 years) and the Hebrew University (2 years). He has held visiting positions at MIT, MSRI, the University of Michigan, the University of Florida, the Hebrew University, and Tel Aviv University. He has been an editor of several mathematics journals including the Research Announcements of the Bulletin of the American Mathematical Society and the Journal of Finite Fields and its Applications. His research is primarily in the geometry and arithmetic of families of nonsingular projective curve covers applied to classical moduli spaces using theta functions and l-adic representations. These are especially applied to relating the Regular Inverse Galois Problem and extensions of Serre's Open Image Theorem. He was included in 2013 Class of Fellows of the American Mathematical Society. He was also a Sloan Fellow (1972–1974), Lady Davis Fellow at Hebrew University (1987–1988), Fulbright scholar at Helsinki University (1982–1983), and Alexander von Humboldt Research Fellow (1994–1996).

Moshe Jarden received his PhD in Mathematics from the Hebrew University of Jerusalem in 1970 under the supervision of Hillel Furstenberg. His post-doctoral research was completed during the years 1971–1973 at the Institute of Mathematics, Heidelberg University, where he habilitated in 1972. In 1974, he returned to Israel, and joined the School of Mathematics of Tel Aviv University. He became a full professor in 1982, and the incumbent of the Cissie and Aaron Beare Chair in Algebra and Number Theory in 1998. His research focuses on families of large algebraic extensions of Hilbertian fields. His book Field Arithmetic (1986) earned him the Landau Prize in 1987. For his pioneering work, and especially his long term cooperation with German mathematicians, he was awarded the L. Meithner-A.v.Humboldt Prize by the Alexander von Humboldt Foundation in 2001. He is the author of “Algebraic Patching”, a Springer Monographs in Mathematics book and a joint author with Dan Haran of another book “The Absolute Galois group of a Semi-Local Fields” of the above-mentioned Springer Monographs in Mathematics.




Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia