1 Preliminaries on Homotopy Theory.- I The General Theory of Fibre Bundles.- 2 Generalities on Bundles.- 3 Vector Bundles.- 4 General Fibre Bundles.- 5 Local Coordinate Description of Fibre Bundles.- 6 Change of Structure Group in Fibre Bundles.- 7 The Gauge Group of a Principal Bundle.- 8 Calculations Involving the Classical Groups.- II Elements of K-Theory.- 9 Stability Properties of Vector Bundles.- 10 Relative K-Theory.- 11 Bott Periodicity in the Complex Case.- 12 Clifford Algebras.- 13 The Adams Operations and Representations.- 14 Representation Rings of Classical Groups.- 15 The Hopf Invariant.- 16 Vector Fields on the Sphere.- III Characteristic Classes.- 17 Chern Classes and Stiefel-Whitney Classes.- 18 Differentiable Manifolds.- 19 Characteristic Classes and Connections.- 20 General Theory of Characteristic Classes.- Appendix 1 Dold’s Theory of Local Properties of Bundles.- Appendix 2 On the Double Suspension.- 4. Single Suspension Sequences.- 7. Double Suspension Sequences.