• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python

ISBN-13: 9781484290286 / Angielski / Miękka / 2023 / 253 str.

Pradeepta Mishra
Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python Pradeepta Mishra 9781484290286 Apress - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python

ISBN-13: 9781484290286 / Angielski / Miękka / 2023 / 253 str.

Pradeepta Mishra
cena 141,19 zł
(netto: 134,47 VAT:  5%)

Najniższa cena z 30 dni: 134,90 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Beginning-Intermediate user level

Understand how to use Explainable AI (XAI) libraries and build trust in AI and machine learning models. This book utilizes a problem-solution approach to explaining machine learning models and their algorithms. 


The book starts with model interpretation for supervised learning linear models, which includes feature importance, partial dependency analysis, and influential data point analysis for both classification and regression models. Next, it explains supervised learning using non-linear models and state-of-the-art frameworks such as SHAP values/scores and LIME for local interpretation. Explainability for time series models is covered using LIME and SHAP, as are natural language processing-related tasks such as text classification, and sentiment analysis with ELI5, and ALIBI. The book concludes with complex model classification and regression-like neural networks and deep learning models using the CAPTUM framework that shows feature attribution, neuron attribution, and activation attribution.   

After reading this book, you will understand AI and machine learning models and be able to put that knowledge into practice to bring more accuracy and transparency to your analyses.


What You Will Learn
  • Create code snippets and explain machine learning models using Python
  • Leverage deep learning models using the latest code with agile implementations
  • Build, train, and explain neural network models designed to scale
  • Understand the different variants of neural network models 
Who This Book Is For

AI engineers, data scientists, and software developers interested in XAI

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Computers > Languages - Python
Wydawca:
Apress
Język:
Angielski
ISBN-13:
9781484290286
Rok wydania:
2023
Dostępne języki:
Ilość stron:
253
Oprawa:
Miękka
Dodatkowe informacje:
Wydanie ilustrowane

Chapter 1:  Introduction to Explainability Library Installations

Chapter Goal: This chapter is to understand various XAI library installations process and initialization of libraries to set up the explainability environment.
No of pages: 15-20 pages        

Chapter 2:  Linear Supervised Model Explainability
Chapter Goal: This chapter aims at explaining the supervised linear models as regression and classification and related issues.
No of pages: 20-25

Chapter 3: Non-Linear Supervised Learning Model Explainability
Chapter Goal: This chapter explains the use of XAI libraries to explain the decisions made by non-linear models for regression and classification.
No of pages : 20-25

Chapter 4: Ensemble Model for Supervised Learning Explainability
Chapter Goal: This chapter explains the use of XAI to explain the decisions made by ensemble models in regression and classification scenarios.
No of pages: 20-25

Chapter 5: Explainability for Natural Language Modeling
Chapter Goal: In this chapter, we are going to use XAI for natural language processing, pre-processing, and feature engineering. 
No of pages: 15-20
 
Chapter 6: Time Series Model Explainability
Goal: The objective of this chapter is to explain the forecast using XAI libraries 
No of Pages: 10-15
 
Chapter 7: Deep Neural Network Model Explainability
Goal: Using XAI libraries to explain the decisions made by Deep Learning models
No of Pages: 20-25

Pradeepta Mishra is the Director of AI, Fosfor at L&T Infotech (LTI). He leads a large group of data scientists, computational linguistics experts, and machine learning and deep learning experts in building the next-generation product—Leni—which is the world’s first virtual data scientist. He has expertise across core branches of artificial intelligence, including autonomous ML and deep learning pipelines, ML ops, image processing, audio processing, natural language processing (NLP), natural language generation (NLG), design and implementation of expert systems, and personal digital assistants (PDAs). In 2019 and 2020, he was named one of "India's Top 40 Under 40 Data Scientists" by Analytics India magazine. Two of his books have been translated into Chinese and Spanish, based on popular demand. 


Pradeepa delivered a keynote session at the Global Data Science Conference 2018, USA. He delivered a TEDx talk on "Can Machines Think?", available on the official TEDx YouTube channel. He has mentored more than 2,000 data scientists globally. He has delivered 200+ tech talks on data science, ML, DL, NLP, and AI at various universities, meetups, technical institutions, and community-arranged forums. He is a visiting faculty member to more than 10 universities, where he teaches deep learning and machine learning to professionals, and mentors them in pursuing a rewarding career in artificial intelligence.

Understand how to use Explainable AI (XAI) libraries and build trust in AI and machine learning models. This book utilizes a problem-solution approach to explaining machine learning models and their algorithms. 

The book starts with model interpretation for supervised learning linear models, which includes feature importance, partial dependency analysis, and influential data point analysis for both classification and regression models. Next, it explains supervised learning using non-linear models and state-of-the-art frameworks such as SHAP values/scores and LIME for local interpretation. Explainability for time series models is covered using LIME and SHAP, as are natural language processing-related tasks such as text classification, and sentiment analysis with ELI5, and ALIBI. The book concludes with complex model classification and regression-like neural networks and deep learning models using the CAPTUM framework that shows feature attribution, neuron attribution, and activation attribution.   

After reading this book, you will understand AI and machine learning models and be able to put that knowledge into practice to bring more accuracy and transparency to your analyses.


You will:
  • Create code snippets and explain machine learning models using Python
  • Leverage deep learning models using the latest code with agile implementations
  • Build, train, and explain neural network models designed to scale
  • Understand the different variants of neural network models



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia