Part 1: History, Concepts, and Theory 1. History of Ideas on Brain Evolution 2. Phylogenetic Character Reconstruction 3. The role of endocasts in the study of brain evolution 4. Invertebrate origins of vertebrate nervous systems
Part 2: The Brains of Fish, Amphibians, Reptiles and Birds 5. The nervous systems of jawless vertebrates 6. The brains of cartilaginous fishes 7. The organization of the central nervous system of amphibians 8. The brains of reptiles and birds 9. Function and evolution of the reptilian cerebral cortex 10. The cerebellum of non-mammalian vertebrates
Part 3: Early Mammals and Subsequent Adaptations 11. Emergence of mammals 12. Mammalian Evolution: The phylogenetic story 13. Organization of neocortex in early mammals 14. What modern mammals teach us about the cellular composition of early brains and mechanisms of brain evolution 15. Consistencies and variances in the anatomical organization of aspects of the mammalian brain stem 16. Comparative anatomy of glial cells in mammals 17. The monotreme nervous system 18. Evolution of flight and echolocation in bats 19. Carnivore brains: Effects of sociality on inter- and intra-specific comparisons of regional brain volumes
Part 4: Primates 20. Phylogeny of primates 21. Expansion of the cortical sheet in primates 22. Scaling up the simian primate cortex: A conserved pattern of expansion across brain sizes 23. Evolution of visual cortex in primates 24. Evolution of subcortical pathways to the extrastriate cortex 25. Evolved mechanisms of high-level visual perception in primates 26. Evolution of parietal cortex in primates 27. Evolution of parietal-frontal networks in primates 28. Evolution of the prefrontal cortex in early primates and anthropoids
Part 5: Evolution of Human Brains 29. Introduction to human brain evolutionary studies 30. Human evolutionary history 31. Evolution of human life history 32. The fossil evidence of human brain evolution 33. Remarkable, but not special: What human brains are made of 34. Timing of brain maturation, early experience, and the human social niche 35. Human association cortex: Expanded, untethered, neoteneous, and plastic 36. On the evolution of the frontal eye field: comparisons of monkeys, apes and humans 37. The evolution of auditory cortex in humans 38. Language evolution 39. The search for human cognitive specializations