1. Physiology of adventitious root formation in cuttings: An overview 2. Environmental control of adventitious rooting in cuttings 3. Molecular control of adventitious root formation 4. Genetic approach of adventitious root formation in cuttings 5. Hormones homeostasis and signaling during adventitious root formation in cuttings 6. Transcriptome analysis of auxin induced adventitious root formation in cuttings 7. Metabolism during adventitious root primordium initiation and development 8. Anatomical changes during adventitious root formation in cuttings 9. Involvement of wound response and primary metabolism during adventitious root formation in cuttings 10. Role of auxin in adventitious root formation 11. Role of hydrogen peroxide in adventitious root formation 12. Role of nitric oxide in adventitious root formation 13. Role of jasmonic acid in adventitious root formation 14. Role of 2,4-D in adventitious root formation 15. Role of cytokinins in adventitious root formation 16. Role of polyamines in adventitious root formation 17. Role of strigolactones in adventitious root formation 18. Role of phenolic compounds in adventitious root formation 19. Role of Plant Growth-Promoting Rhizobacterium in adventitious root formation 20. In vitro micrografting to induce juvenility and improve rooting 21. Natural variation in adventitious root formation 22. Adventitious root formation in cuttings as influence by genotypes, branch position, leaf area and types of cuttings 23. Adventitious root formation in cuttings and effects of maturation (juvenile and mature phages) 24. Cloning by cuttings: Hormonal characteristics in relation crown position, rooting competence, and orthotropism as ramets 25. Micropropagation in mature trees by manipulation of phase change, stress and culture environment 26. Macropropagation in mature trees by manipulation of phase change, stress and culture environment
Azamal Husen is a and was previously a Visiting Faculty of the Forest Research Institute, and the Doon College of Agriculture and Forest at Dehra Dun, India. Husen's research and teaching experience of 20 years encompasses the biogenic nanomaterial fabrication and application, plant responses to nanomaterials, plant adaptation to harsh environments at the physiological, biochemical, and molecular levels, herbal medicine, and clonal propagation for improvement of tree species. He has conducted research sponsored by the World Bank, the National Agricultural Technology Project, the Indian Council of Agriculture Research, the Indian Council of Forest Research Education, and the Japan Bank for International Cooperation. Husen has published extensively and served on the Editorial Board and as reviewer of reputed journals. He is Series Co-Editor of 'Plant Biology, Sustainability and Climate Change', Elsevier, USA and is Editor-in-Chief of the American Journal of Plant Physiology.