ISBN-13: 9781461294672 / Angielski / Miękka / 2011 / 696 str.
ISBN-13: 9781461294672 / Angielski / Miękka / 2011 / 696 str.
This book presents an account of the NATO Advanced Study Institute on "Energy Transfer Processes in Condensed Matter," held in Erice, Italy, from June 16 to June 30, 1983. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The objective of the Institute was to present a comprehensive treatment of the basic mechanisms by which electronic excitation energy, initially localized in a particular constituent or region of a condensed material, transfers itself to the other parts of the system. Energy transfer processes are important to such varied .fields as spectroscopy, lasers, phosphor technology, artificial solar energy conversion, and photobiology. This meeting was the first encounter of this sort entirely dedicated to this important topic. A total of 65 participants came from 47 laboratories and 16 nations (Belgium, Czechoslovakia, F.R. of Germany, France, Greece, India, Ireland, Israel, Italy, The Netherlands, Poland, Portugal, Switzerland, Turkey, United Kingdom, and the United States of A America). The secretaries of the course were: Ms. Aliki Karipidou for the scientific aspects and Mr. Massimo Minella for the admini strative aspects of the meeting."
to Energy Transfer and Relevant Solid-State Concepts.- to Energy Transfer and Relevant Solid-State Concepts.- Abstract.- I. Introduction.- II. Basic Concepts Underlying Energy Transfer in Solids.- II.A. Separation of Electronic and Nuclear Motion.- II.B. One-Electron Approximation.- II.C. Electronic Band Structure.- 1. Case I: Nearly Free Electrons.- 2. Case II: Tightly Bound Electrons.- II.D. Lattice Dynamics and Phonons.- 1. Case I: The Case of Small q-Values.- 2. Case II: The Case of $$q = \frac{\pi }$$.- II.E. The Electron-Phonon Interaction.- 1. Deformation Potential Theory.- 2. Fröhlich Hamiltonian.- III. General Methods of Energy Transfer.- III.A. Resonant Energy Transfer.- III.B. Nonresonant Energy Transfer.- III.C. Electronic Charge Transport and Energy Transfer.- III.D. Energy Transfer by Excitons.- 1. Exciton Structure.- 2. Exciton Transport.- III.E. Auger Processes as Energy Transfer.- III.F. Inelastic Collisions. Hot Electron Excitation.- IV. Closing Remarks.- Appendix: Effective Mass Approximation for Dopants with Coulomb Fields.- References.- Energy Transfer among Ions in Solids.- Abstract.- I. Interaction among Atoms.- I.A. Two-Atom System.- I.B. Dynamical Effects of the Interaction.- 1. Coherent Energy Transfer in a Two-Atom System.- 2. Incoherent Energy Transfer in a Two-Atom System.- 3. Coherent Energy Transfer in a Linear Chain.- 4. Incoherent Energy Transfer in a Linear Chain.- I.C. The Relevant Energy Transfer Hamiltonian.- I.D. Interaction between Two Atoms in Solids.- II. Different Types of Interactions.- II.A. Multipolar Electric Interactions.- II.B. Exchange Interactions.- II.C. Electro-Magnetic Interactions.- II.D. Phonon-Assisted Energy Transfer.- III. Statistical Treatment of Energy Transfer. Modes of Excitation.- III.A. Introduction.- III.B. Pulsed Excitation.- III.C. Continuous Excitation.- IV. Statistical Treatment of Energy Transfer. Case With No Migration among Donors.- IV.A. Basic Equation.- IV.B. Simple Models.- 1. Perrin Model.- 2. Stern-Volmer Model.- IV.C. Multipolar Interactions.- IV.D. Exchange Interactions.- V. Statistical Treatment of Energy Transfer. Case with Migration among Donors.- V.A. Migration.- V.B. Diffusion.- V.C. Migration as Diffusion Process.- 1. Diffusion Only.- 2. Diffusion and Relaxation.- 3. Diffusion, Relaxation and Transfer.- V.D. Migration as Random Walk.- V.E. Comparison of Two Models.- V.F. Calculations of Transfer Rates.- 1. Diffusion Model.- 2. Hopping Model.- V.G. Regimes of Donor Decay.- 1. No Diffusion.- 2. Diffusion-Limited Decay.- 3. Fast Diffusion.- V.H. Migration in the Case of Inhomogeneous Broadenings of Donors’ Levels.- VI. Collective Excitations.- VI.A. Introduction.- VI.B. Eigenfunctions.- VI.C. Dispersion Relations.- VI.D. Effective Mass.- VI.E. Generalization to Three Dimensions.- VI.F. Periodic Boundary Conditions and Density of States.- VI.G. Interaction of Photons with Collective Excitations.- Acknowledgements.- References.- Mathematical Methods for the Description of Energy Transfer.- Abstract.- I. Introduction.- I.A. Preliminary Remarks.- I.B. Processes and Questions of Interest.- I.C. Some Experiments.- I.D. Outline of This Article.- II. The Basic Transport Instrument: The Evolution Equation.- II.A. Introduction and the Coherence-Incoherence Problem.- II.B. Motivation for the GME.- II.C. Derivation and Validity of the GME.- II.D. Solution of Foerster’s Problem.- II.E. General Remarks About the GME.- III. Memory Functions: Explicit Calculations.- III.A. Outline.- III.B. Exact Results for Pure Crystals.- III.C. Exact Results for an SLE.- III.D. Perturbative Evaluation for Linear Exciton-Phonon Coupling.- III.E. Evaluation from Spectra.- IV. Calculation of Observables.- IV.A. Prelude: Calculation of Propagators.- IV.B. Application to Grating Experiments.- IV.C. Capture Experiments.- V. Miscellaneous Methods and conclusions.- V.A. Methods for Cooperative Trap Interactions.- V.B. Conclusion.- Acknowledgements.- References.- Energy Transfer in Insulating Materials.- Abstract.- I. Introduction.- II. Single-Step Energy Transfer.- III. Multistep Energy Transfer.- IV. Characteristics of Materials.- V. Strong Temperature Dependence.- VI. Weak Temperature Dependence.- VI.A. Transition Metal Compounds.- VI.B. Hexavalent Uranium Compounds.- VI.C. Trivalent Rare Earth Compounds.- VII. Fluorescence Line Narrowing in Glasses.- Acknowledgement.- References.- Energy Transfer in Semiconductors.- Abstract.- I. Introduction, or the Physical Problem of Looking through a Window.- II. Energy Transfer from an External Photon Field into a Semiconductor.- II.A. Photons in Vacuum.- II.B. A Mechanical Model for a Medium.- II.C. The Dielectric Function.- II.D. Polaritons.- II.E. What Happens at the Surface.- II.F. Phonon Polaritons.- II.G. Excitons: Oscillators with Spatial Dispersion.- II.H. Exciton-Polaritons and the Problem of Additional Boundary Conditions.- II.I. Experimental Proofs for the Concept of Exciton-Polaritons.- III. Energy Transfer from Exciton-Polaritons to the Phonon-Field.- III.A. Review of Energy Transfer Processes in Semiconductors.- III.B. Interaction Mechanisms between Excitons and Phonons.- III.C Lo-Phonon Assisted Luminescence.- III.D. Resonant Brillouin Scatterin.- III.E. Raman Scattering.- III.F. Resonant Raman Scattering, Hot Luminescence, Thermalisation and Photoluminescence.- IV. Energy Transfer between Various Exciton-Polariton Modes by Nonlinear Interaction.- IV.A. Nonlinear Interaction Between Phonons.- IV.B. Two-Photon Raman Scattering.- IV.C. Degenerate Four Wave Mixing.- IV.D. Laser Induced Gratings.- V. Conclusion.- Appendices.- Appendix A: Exciton-Polaritons in Real Semiconductors.- Appendix B: Surface Polaritons.- Appendix C: The Role of Impurities.- Acknowledgemtnts.- References.- Triplet Excitation Transfer Studies in Organic Condensed Matter via Cooperative Effects.- Abstract.- I. Introduction.- II. Introduction to Molecular Crystal Band States.- III. Direct Approach for Study of Triplet Transport via Delayed Fluorescence.- IV. The Triplet Exciton Macroscopic Diffusion Equation.- V. Experimental Determination of the Triplet Exciton Diffusion Tensor.- V.A. Time-Dependent Buildup and Decay Transient Experiments.- 1. Buildup of Delayed Fluorescence.- 2. Decay of Delayed Fluorescence.- V.B. Phase-Lag Steady-State Experiments.- VI. Possibility of Detecting Coherence Effects in Triplet Transport.- VI.A. Buildup and Decay Transient Experiments.- VI.B. Phase-Lag Steady-State Experiments.- References.- Energy Transfer in Solid Rare Gases.- Abstract.- I. Introduction.- II. Elementary Excitations of Rare Gas Crystals.- II.A. Lattice Vibrations.- II.B. Resonant Electronic States.- II.C. Localized Electronic States.- II.D. Localization (Self-Trapping) of Excitons.- 1. Exciton-Phonon Scattering.- 2. Self-Trapping.- 3. Microscopic Picture.- III. Electronic States of Guest Atoms and Molecules in Rare Gas Matrices.- III.A. Transition Energies.- III.B. Lattice Relaxation and Line Shapes.- IV. Electronic and Vibrational Relaxation.- V. Energy Transfer.- V.A. Concepts.- V.B. Migration of Free Excitons.- 1. Transfer to Guests.- 2. Transfer to Boundaries.- V.C. Energy Transfer Between Localized Centers.- 1. Electronic Energy Transfer of Self-Trapped Excitons to Guest Centers.- 2. Electronic Energy Transfer between Guest Centers.- 3. Vibrational Energy Transfer Between Guest Molecules.- V.D. Energy and Mass Transport in Liquid Rare Gases.- VI. High Excitation Densities.- VI.A. Laser Applications.- VI.B. Loss Processes and Electron Plasma.- References.- Energy Transfer and Localization in Ruby.- Abstract.- I. The Localization of Optical Excitation in a Solid.- II.Energy Transfer in Ruby — Early Experiments.- III.The Search for Mobility Edges in the Ruby R1 Line.- IV.Fluorescence Line Narrowing and Hole Burning Experiments in Ruby.- V. Degenerate Four Wave Mixing Experiments in Ruby: An Attempt to Directly Measure the Energy Migration Distance.- VI. Electric Field Experiments in Ruby.- References.- Energy Transfer and Ionic Solid State Lasers.- Abstract.- I. Introduction.- II. Energy Transfer Scheme for Pumping Efficiency Improvement.- II.A. Stokes Processes.- 1. Energy Transfer Towards Pumping Levels.- 2. Deactivation by Energy Transfer of Levels in Self-Saturating and Cascade Lasers.- II.B. Anti-Stokes Processes and Up-Conversion Pumped Lasers.- III. Drawbacks Introduced By Energy Transfer.- III.A. Stokes Processes.- 1. Self-Quenching by Energy Diffusion and Cross-Relaxation.- 2. Role of Crystal Field Strength.- III.B. Anti-Stokes Processes Up-Conversion and Reabsorption.- IV. Conclusion.- References.- A Scalar Field Strength Parameter for Rare-Earth Ions: Meaning and Application to Energy Transfers.- Abstract.- I. Introduction.- II. Theoretical Investigation of Maximum Stark Splittings.- III. Discussion of the Approximation.- IV. Application to Maximum Stark Splitting Calculations: Comparison with Experiments.- IV.A. Given Ion (Nd3+) and Crystal (LaF3), Comparison of N*v from Maximum Splitting to N*v from Bqk’ s for Different J-Terms.- IV.B. Given J-Term (4I9/2) of Given Ion (Nd3+), Study of Maximum Splitting for Different Crystals with Different Site Symmetry.- IV.C. Given J-Term (4I13/2) and Crystal (LaF3), Study for Different Ion.- V. Conclusion.- References.- Energy Transfer between Inorganic Ion in Glasses.- Abstract.- I. Introduction.- II. Uranyl Ion and Rare Earth Ions.- III. Bi3+, Eu3+ and Nd3+.- IV. Cr3+ And Nd3+ and Yb3+ in Lanthanum Phosphate Glass.- V. Energy Transfer From Mn2+ to Er3+ in Fluoride Glasses and Mn2+ to Nd3+, Ho3+ and Er3+ in Oxide Glasses.- V.A. Manganese.- V.B. Erbium.- V.C. Energy Transfer Between Manganese and Erbium.- VI. Conclusions.- Acknowledgement.- References.- Non-Equilibrium Concepts in Solar Energy Conversion.- Abstract.- I. General Concepts for Radiation.- I.A. Introduction.- I.B. Photons in Discrete Quantum States.- I.C. Continuous Photon Spectrum.- I.D. Photon Fluxes.- I.E. The Case of Black-Body Radiation.- I.F. Simple Applications of the Energy Flux Concept.- I.G. Fluxes Compared with Equilibrium Quantities.- II. Diluted Black-Body Radiation.- II.A. DBR: Definition and Properties.- II.B. Fluxes of DBR.- II.C. DBR as Non-Equilibrium Radiation.- II.D. Application of DBR to Solar Energy Conversion.- II. E. Discussion.- II.F. A More Rigorous Version of Section II.D.- II.G. An Argument from Availability.- III. Statistical Thermodynamics of Cascade Converters.- III.A. Some Thermodynamic Results.- III.B. Discussion.- III.C. The Absorption Coefficient; The Photon Chemical Potential.- III.D. Solar Cell Equation in Terms of Photon (Number) Fluxes.- III.E. The Maximum Efficiency of an Infinite Stack of Solar Cells.- III.F. Additional Comments: Independent Derivation of ?g for the Stack.- III.G. Additional Comment: The Solar Cell Equation and Standard Approximations.- III.H. The Finite Stack.- IV. Problems.- V. Main Symbol Used and References.- VI. Appendix.- References.- Long Seminars.- Magneto-Optical Study of Energy Transfer in Ruby.- Abstract.- I. Introduction.- II. Experimental.- III. Experimental Results.- III.A. Lifetime Measurements.- III.B. Transferred Intensities vs. Magnetic field.- III.C. Excitation Spectra.- IV. Discussion.- Acknowledgement.- References.- Spectroscopic Studies of Energy Transfer in Solids.- Abstract.- I. Introduction.- II. Material and Experimental Equipment.- III. Useful Data about Theoretical Approaches to the Energy Transfer.- III.A. Resonant Radiative Energy Transfer.- III.B. Resonant Nonradiative Energy Transfer.- 1. Without Diffusion Among S Ions.- 2. With Diffusion Among S Ions.- III.C. Up-Conversion Processes by Energy Transfer.- III.D. Influence of the Traps in the Materials.- IV. Energy Transfer in Doped Materials.- IV.A. Bi3+ - Eu3+ Codoped Germanate Glass or Lu2si207 Crystal.- IV.B. Ky3F10(Eu2+).- IV.C. LaC13 - Gd3+.- V. Energy Transfer in Stoichiometric Materials.- V.A. Manganese Compounds.- V.B. Rare-earth Compounds.- VI. Summary.- Acknowledgements.- References.- Dynamical Models of Energy Transfer in Condensed Matter.- Abstract.- I. Introduction.- II. Direct Transfer.- III. Diffusion in the Framework of the CTRW.- IV. Trapping in the CTRW Model.- Acknowledgements.- References.- Energy Transfer and Electron Transfer in Photobiological, Photochemical, and Photoelectrochemical Processes (Abstract only).- An Example of Identifying the Specific Mechanism of Resonant Energy Transfer: Sb3+ ? Mn2+ in Fluoro-Phosphate Phosphors (Abstract only).- Energy Transfer and Anderson Localization in Ruby Electric Field and Uniaxial Stress Effects.- Abstract.- I. Introduction.- II. E-sublattices and ?-sublattices.- III. Experimental.- IV. Discussion.- IV.A. Rapid or Slow Nonradiative Resonant Transfer?.- IV.B. Anderson Transition.- IV.C. Internal Electric Fields and Energy Transfer.- V. Conclusion.- References.- Time-Resolved Studies of Energy Transfer.- Abstract.- I. Introduction.- II. Origin of the Time Dependence.- III. Methods of Theoretical Analysis.- IV. Experimental Techniques.- V. Examples of Time-Resolved Energy Transfer Studies.- V.A. Energy Transfer Between Eu3+ Ions in Eux Y1-x P5 O14 Crystals.- V.B. Energy Transfer among Nd3+ Ions in Lightly Doped Solids.- V.C. Exciton Diffusion in Ndx La1-x P5 014 Crystals.- VI. Conclusions.- References.- Trends in Scientific Computing.- Abstract.- I. The Problem-Solving Cycle.- II. Providing A Better Environment for Scientific Computing.- II.A. Computer-Based Local and Long-Distance Networks.- II.B. Hardware and Software Tool.- 1. Video Display Technology.- 2. Direct Input.- 3. Software.- III. Achieving Faster Computation.- III.A. The Need For Faster Computation.- III.B. Historical Trends.- III.C. Conventional Processor Designs.- III.D. Concurrent Operation of Computer Subsystems.- III.E. Pipelining.- III.F. The Potential for Exploiting Parallelism.- III.G. Radical Innovations in Processor Design.- IV. Computational Modelling and Simulation.- References.- Short Seminars.- Photoconductivity of Indium in Silicon.- Nonlinear Energy Transfer in Semiconductors Yielding Bistability.- Luminescence and Energy Transfer In YA1G:Nd,Ce.- Energy Transfer Effects in NaEuTiO4.- Energy Transfer in Antiferromagnetic Alkali Manganese Halide Crystals.- Auger Effect Due to Shallow Donors in CdF2:Mn Luminescence.- Energy Transfer Processes in Znse:Ni,Fe.- On the Role of Nonlocalized Excitation Mechanisms in the Generation of Red Er3+ Emission in CdF2:Er,Yb.- The General Three-Dimensional Haken-Strobl Model.- The Luminescence Spectrum of U02mo04.- Contributors.
1997-2024 DolnySlask.com Agencja Internetowa