• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik

ISBN-13: 9783662525111 / Angielski / Miękka / 2016 / 287 str.

Bernhard Schoelkopf; Zhiyuan Luo; Vladimir Vovk
Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik Schölkopf, Bernhard 9783662525111 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik

ISBN-13: 9783662525111 / Angielski / Miękka / 2016 / 287 str.

Bernhard Schoelkopf; Zhiyuan Luo; Vladimir Vovk
cena 201,72
(netto: 192,11 VAT:  5%)

Najniższa cena z 30 dni: 192,74
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

This book celebrates the work of Vladimir Vapnik, developer of the support vector machine, which combines methods from statistical learning and functional analysis to create a new approach to learning problems, and who continues as active as ever in his field.

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Mathematics > Prawdopodobieństwo i statystyka
Computers > Mathematical & Statistical Software
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9783662525111
Rok wydania:
2016
Wydanie:
Softcover Repri
Ilość stron:
287
Waga:
0.43 kg
Wymiary:
23.39 x 15.6 x 1.65
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

Part I - History of Statistical Learning Theory.- Chap. 1 - In Hindsight: Doklady Akademii Nauk SSSR, 181(4), 1968.- Chap. 2 - On the Uniform Convergence of the Frequencies of Occurrence of Events to Their Probabilities.- Chap. 3 - Early History of Support Vector Machines.- Part II - Theory and Practice of Statistical Learning Theory.- Chap. 4 - Some Remarks on the Statistical Analysis of SVMs and Related Methods.- Chap. 5 - Explaining AdaBoost.- Chap. 6 - On the Relations and Differences Between Popper Dimension, Exclusion Dimension and VC-Dimension.- Chap. 7 - On Learnability, Complexity and Stability.- Chap. 8 - Loss Functions.- Chap. 9 - Statistical Learning Theory in Practice.- Chap. 10 - PAC-Bayesian Theory.- Chap. 11 - Kernel Ridge Regression.- Chap. 12 - Multi-task Learning for Computational Biology: Overview and Outlook.- Chap. 13 - Semi-supervised Learning in Causal and Anticausal Settings.- Chap. 14 - Strong Universal Consistent Estimate of the Minimum Mean-Squared Error.- Chap. 15 - The Median Hypothesis.- Chap. 16 - Efficient Transductive Online Learning via Randomized Rounding.- Chap. 17 - Pivotal Estimation in High-Dimensional Regression via Linear Programming.- Chap. 18 - Some Observations on Sparsity Inducing Regularization Methods for Machine Learning.- Chap. 19 - Sharp Oracle Inequalities in Low Rank Estimation.- Chap. 20 - On the Consistency of the Bootstrap Approach for Support Vector Machines and Related Kernel-Based Methods.- Chap. 21 - Kernels, Pre-images and Optimization.- Chap. 22 - Efficient Learning of Sparse Ranking Functions.- Chap. 23 - Direct Approximation of Divergences Between Probability Distributions.- Index.

This book honours the outstanding contributions of Vladimir Vapnik, a rare example of a scientist for whom the following statements hold true simultaneously: his work led to the inception of a new field of research, the theory of statistical learning and empirical inference; he has lived to see the field blossom; and he is still as active as ever. He started analyzing learning algorithms in the 1960s and he invented the first version of the generalized portrait algorithm. He later developed one of the most successful methods in machine learning, the support vector machine (SVM) – more than just an algorithm, this was a new approach to learning problems, pioneering the use of functional analysis and convex optimization in machine learning.

 

Part I of this book contains three chapters describing and witnessing some of Vladimir Vapnik's contributions to science. In the first chapter, Léon Bottou discusses the seminal paper published in 1968 by Vapnik and Chervonenkis that lay the foundations of statistical learning theory, and the second chapter is an English-language translation of that original paper. In the third chapter, Alexey Chervonenkis presents a first-hand account of the early history of SVMs and valuable insights into the first steps in the development of the SVM in the framework of the generalised portrait method.

 

The remaining chapters, by leading scientists in domains such as statistics, theoretical computer science, and mathematics, address substantial topics in the theory and practice of statistical learning theory, including SVMs and other kernel-based methods, boosting, PAC-Bayesian theory, online and transductive learning, loss functions, learnable function classes, notions of complexity for function classes, multitask learning, and hypothesis selection. These contributions include historical and context notes, short surveys, and comments on future research directions.

 

This book will be of interest to researchers, engineers, and graduate students engaged with all aspects of statistical learning.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia