• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Embedded Deep Learning: Algorithms, Architectures and Circuits for Always-On Neural Network Processing » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Embedded Deep Learning: Algorithms, Architectures and Circuits for Always-On Neural Network Processing

ISBN-13: 9783319992228 / Angielski / Twarda / 2018 / 206 str.

Bert Moons; Daniel Bankman; Marian Verhelst
Embedded Deep Learning: Algorithms, Architectures and Circuits for Always-On Neural Network Processing Moons, Bert 9783319992228 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Embedded Deep Learning: Algorithms, Architectures and Circuits for Always-On Neural Network Processing

ISBN-13: 9783319992228 / Angielski / Twarda / 2018 / 206 str.

Bert Moons; Daniel Bankman; Marian Verhelst
cena 524,53
(netto: 499,55 VAT:  5%)

Najniższa cena z 30 dni: 501,19
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Electronics - Circuits - General
Technology & Engineering > Signals & Signal Processing
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9783319992228
Rok wydania:
2018
Wydanie:
2019
Ilość stron:
206
Waga:
0.49 kg
Wymiary:
23.39 x 15.6 x 1.42
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

Chapter 1 Embedded Deep Neural Networks.- Chapter 2 Optimized Hierarchical Cascaded Processing.- Chapter 3 Hardware-Algorithm Co-optimizations.- Chapter 4 Circuit Techniques for Approximate Computing.- Chapter 5 ENVISION: Energy-Scalable Sparse Convolutional Neural Network Processing.- Chapter 6 BINAREYE: Digital and Mixed-signal Always-on Binary Neural Network Processing.- Chapter 7 Conclusions, contributions and future work.

Dr. ir. Bert Moons received the B.S. and M.S. and PhD degree in Electrical Engineering from KU Leuven, Leuven, Belgium in 2011, 2013 and 2018. He performed his PhD research at ESAT-MICAS as an IWT-funded Research Assistant, focusing on energy-scalable and run-time adaptable digital circuits for embedded Deep Learning applications. Bert authored 15+ conference and journal publications, was a Visiting Research Student at Stanford University in the Murmann Mixed-Signal Group and received the SSCS predoctoral achievement award in 2018.  Currently he is with Synopsys, as a hardware design architect for the DesignWare EV6x Embedded Vision and Deep Learning processors.

Daniel Bankman received the S.B. degree in electrical engineering from the Massachusetts Institute of Technology, Cambridge, MA in 2012 and the M.S. degree from Stanford University, Stanford, CA in 2015. Since 2012, he has been working toward the Ph.D. degree at Stanford University, focusing on mixed-signal processing for machine learning. He has held internship positions with Analog Devices and Intel. His research interests include algorithms, architectures, and circuits for energy-efficient learning and inference in smart devices. He was a recipient of the Texas Instruments Stanford Graduate Fellowship in 2012, the Numerical Technologies Founders Prize in 2013, and the John von Neumann Student Research Award in 2015 and 2017.

Prof. Dr. ir. Marian Verhelst is a professor at the MICAS laboratories (MICro-electronics And Sensors) of the Electrical Engineering Department of KU Leuven. Her research focuses on embedded machine learning, energy-efficient hardware accelerators, self-adaptive circuits and systems, and low-power sensing and processing. Before that, she received a PhD from KU Leuven cum ultima laude, she was a visiting scholar at the Berkeley Wireless Research Center (BWRC) of UC Berkeley, and she worked as a research scientist at Intel Labs, Hillsboro OR. Prof. Verhelst is a member of the DATE conference executive committee, and was a member of the ESSCIRC and ISSCC TPCs and of the ISSCC executive committee. Marian is an SSCS Distinguished Lecturer, was a member of the Young Academy of Belgium, an associate editor for TCAS-II and JSSC and a member of the STEM advisory commitee to the Flemish Government. Marian holds a prestigious ERC Grant from the European Union.


This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning.

  • Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices;
  • Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes;
  • Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations;
  • Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.




Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia