


ISBN-13: 9781119679769 / Angielski / Twarda / 2020 / 384 str.
ISBN-13: 9781119679769 / Angielski / Twarda / 2020 / 384 str.
About the Editors xiiiList of Contributors xvPreface xvii1 What Is an Electrical Connector? 1Michael G. Pecht and San Kyeong1.1 Challenges of Separable Connectors 11.2 Components of a Connector 21.2.1 Contact Springs 21.2.2 Contact Finishes 31.2.2.1 Noble Metal Contact Finishes 41.2.2.2 Non-noble Metal Contact Finishes 41.2.3 Connector Housing 41.2.4 Contact Interface 51.3 Connector Types 61.3.1 Board-to-Board Connectors 71.3.2 Wire/Cable-to-Wire/Cable Connectors 81.3.3 Wire/Cable-to-Board Connectors 101.4 Connector Terminology 11References 142 Connector Housing 17Michael G. Pecht2.1 Mechanical Properties 172.2 Electrical Properties 192.3 Flammability 212.4 Temperature Rating 222.5 Housing Materials 232.5.1 Thermoplastic Polymers 252.5.1.1 Polyesters 252.5.1.2 Polyimides, Polyamide-imides, and Polyetherimides 262.5.1.3 Polyphenylene Sulfides 262.5.1.4 Polyether Ether Ketones 262.5.1.5 Liquid-Crystalline Polymers 272.5.1.6 Comparison ofThermoplastic Polymers 272.5.2 Thermosetting Polymers 272.5.3 Additives to Housing Materials 292.5.4 Manufacturing of Housing Materials 29References 303 Contact Spring 31Michael G. Pecht3.1 Copper Alloys 313.1.1 Unified Number System (UNS) 313.1.2 Properties of Copper Alloys 333.2 Nickel Alloys 373.3 Conductive Elastomers 373.4 Contact Manufacturing 38References 414 Contact Plating 43Michael G. Pecht4.1 Noble Metal Plating 434.1.1 Gold 444.1.2 Palladium 464.1.3 Combination of Gold and Palladium 474.2 Non-noble Metal Plating 474.2.1 Silver 484.2.1.1 Characteristics of Silver as a Contact Finish 494.2.1.2 Potential Tarnish-Accelerating Factors 504.2.1.3 Use of Silver in Typical Connectors 534.2.1.4 Managing Silver Corrosion 544.2.2 Silver-Palladium Alloys 554.2.3 Nanocrystalline Silver Alloys 554.2.4 Silver-Bismuth Alloys 574.2.5 Tin 574.2.6 Nickel Contact Finishes 594.3 Underplating 594.4 Plating Process 604.4.1 Electrolytic Plating 614.4.1.1 Rack Plating 614.4.1.2 Barrel Plating 614.4.2 Electroless Plating 624.4.3 Cladding 634.4.4 Hot Dipping 63References 635 Insertion and Extraction Forces 67Michael G. Pecht5.1 Insertion and Extraction Forces 675.2 Contact Retention 705.3 Contact Force and Deflection 705.4 Contact Wipe 71References 736 Contact Interface 75Michael G. Pecht and San Kyeong6.1 Constriction Resistance 766.2 Contact Resistance 776.3 Other Factors Affecting Contact Resistance 796.4 Current Rating 816.5 Capacitance and Inductance 826.6 Bandpass and Bandwidth 86References 877 The Back-End Connection 89Chien-Ming Huang, San Kyeong and Michael G. Pecht7.1 Soldered Connection 897.2 Press-Fit Connection 937.3 Crimping Connection 957.4 Insulation Displacement Connection 98References 988 Loads and Failure Mechanisms 103San Kyeong, Lovlesh Kaushik and Michael G. Pecht8.1 Environmental Loads 1048.1.1 Temperature 1048.1.2 Vibration Load 1058.1.3 Humidity 1068.1.4 Contamination 1078.1.5 Differential Pressure 1088.2 Failure Mechanisms in Electrical Connectors 1098.2.1 Silver Migration 1108.2.2 Tin Whiskers 1148.2.3 Corrosion Failure 1198.2.3.1 Dry Corrosion 1198.2.3.2 Galvanic Corrosion 1208.2.3.3 Pore Corrosion 1218.2.3.4 Creep Corrosion 1218.2.3.5 Fretting Corrosion 1238.2.4 Arc Formation 1248.2.5 Creep Failure 1288.2.6 Wear 1318.2.6.1 Adhesive Wear 1328.2.6.2 Abrasive Wear 1338.2.6.3 Fatigue Wear 1348.2.6.4 Corrosive Wear 1348.2.6.5 Fretting Wear 1358.2.7 Frictional Polymerization 1368.3 Case Study by NASA: Electrical Connectors for Spacecraft 137References 1399 Fretting in Connectors 147Deepak Bondre and Michael G. Pecht9.1 Mechanisms of Fretting Failure 1499.1.1 Material Factors That Affect Fretting 1529.1.1.1 Contact Materials 1529.1.1.2 Hardness 1559.1.1.3 Surface Finish 1559.1.1.4 Frictional Polymerization 1569.1.1.5 Grain Size 1569.1.1.6 Oxides 1579.1.1.7 Coefficient of Friction 1589.1.1.8 Electrochemical Factor 1589.1.2 Operating Factors That Affect Fretting 1589.1.2.1 Contact Load 1589.1.2.2 Fretting Frequency 1599.1.2.3 Slip Amplitude 1629.1.2.4 Electric Current 1629.1.3 Environmental Factors That Affect Fretting 1639.1.3.1 Humidity 1649.1.3.2 Temperature 1649.1.3.3 Dust 1659.2 Reducing the Damage of Fretting 1679.2.1 Lubrication 1689.2.2 Improvement in Design 1689.2.3 Coatings 169References 17010 Testing 173Bhanu Sood andMichael G. Pecht10.1 Dielectric With standing Voltage Testing 17310.2 Insulation Resistance Testing 17410.3 Contact Resistance Testing 17610.4 Current Rating 17910.5 Electromagnetic Interference and Electromagnetic Compatibility Testing 18010.6 Temperature Life Testing 18110.7 Thermal Cycling Testing 18210.8 Thermal Shock Testing 18210.9 Steady-State Humidity Testing 18310.10 Temperature Cycling with Humidity Testing 18410.11 Corrosion 18410.11.1 Dry Corrosion 18510.11.2 Creep Corrosion 18610.11.3 Moist Corrosion 18710.11.4 Fretting Corrosion 18710.12 Mixed Flowing Gas Testing 18810.12.1 Battelle Labs MFG Test Methods 18910.12.2 EIA MFG Test Methods: EIA 364-TP65A 19010.12.3 IEC MFG Test Methods: IEC 68-2-60 Part 2 19010.12.4 Telcordia MFG Test Methods: Telcordia GR-63-CORE Section 5.5 19110.12.5 IBM MFG Test Methods: G1(T) 19110.12.6 CALCE MFG Chamber Capability 19210.13 Vibration 19210.13.1 Mechanical Shock 19310.13.2 Mating Durability 19310.14 Highly Accelerated Life Testing 19410.15 Environmental Stress Screening 194References 19511 Supplier Selection 197Michael H. Azarian, Diganta Das and Michael G. Pecht11.1 Connector Reliability 19711.2 Capability Maturity Models 19811.3 Key Reliability Practices 19811.3.1 Reliability Requirements and Planning 19911.3.2 Training and Development 20011.3.3 Reliability Analysis 20011.3.4 Reliability Testing 20111.3.5 Supply-Chain Management 20111.3.6 Failure Data Tracking and Analysis 20211.3.7 Verification and Validation 20211.3.8 Reliability Improvement 20311.4 Reliability Capability of an Organization 20311.5 The Evaluation Process 204References 20512 Selecting the Right Connector 207Ilknur Baylakoglu and San Kyeong12.1 Connector Requirements Based on Design and Targeted Application 20712.2 Mating Cycles 20812.3 Current and Power Ratings 20912.4 Environmental Conditions 21212.5 Termination Types 21312.6 Materials 21312.6.1 Connector Housing Materials 21612.6.2 Connector Spring Materials 21712.7 Contact Finishes 21712.8 Reliability 21812.9 Raw Cables and Assemblies 21912.10 Supplier Reliability Capability Maturity 21912.11 Connector Selection Team 22012.12 Selection of Candidate Parts from a Preferred Parts Database 22112.13 Electronic Product Manufacturers' Parts Databases 22112.14 Parts Procurement 22312.15 Parts Availability 22312.16 High-Speed Connector Selection 22412.17 NASA Connector Selection 22412.18 Harsh Environment Connector Selection 22712.19 Fiber-Optic Interconnect Requirements by Market 22912.20 High-Power Subsea Connector Selection 22912.20.1 Undersea Connector Reliability 23112.21 Screening Tests 23212.22 Low-Voltage Automotive Single- and Multiple-Pole Connector Validation 23612.23 Failure Modes, Mechanisms, and Effects Analysis for Connectors 23612.24 Connector Experiments 24212.25 Summary 246References 24613 Signal Connector Selection 251Michael G. Pecht13.1 Issues Involving High-Speed Connectors 25113.2 Signal Transmission Quality Considerations 25213.2.1 Interconnect Delays 25213.2.2 Signal Distortion 25213.3 Electromagnetic Compatibility 25313.4 Virtual Prototyping 25413.4.1 TDR Impedance Measurements 25513.4.1.1 Reflection Coefficient 25513.4.1.2 TDR Resolution Factors 25613.4.1.3 TDR Accuracy Factors 25713.5 Vector Network Analyzer 25913.6 Simulation Program with Integrated Circuit Emphasis (SPICE) 259References 26014 Advanced Technology Attachment Connectors 261Neda Shafiei, Kyle LoGiudice and Michael G. Pecht14.1 ATA Connector and SATA Connector Overview 26114.2 History of ATA and SATA 26314.3 Physical Description of ATA Connectors, ATA Alternative Connectors, and SATA Connectors 26414.4 ATA Standardization and Revisions 26814.5 SATA Standardization and Revisions 27014.6 SATA in the Future 272References 27315 Power Connectors 275Michael G. Pecht and San Kyeong15.1 Requirements for Power Connectors 27515.2 Power Connector Materials 27615.3 Types of Power Connectors 27715.4 Power Contact Resistance 28015.5 Continuous, Transient, and Overload Current Capacities 28215.5.1 Continuous Current Capacity 28215.5.2 Transient Current Capacity 28315.5.3 Overload Current Capacity 28415.6 Current Rating Method 284References 28616 Electrical Connectors for Underwater Applications 289Flore Remouit, Jens Engström and Pablo Ruiz-Minguela16.1 Background and Terminology 29016.1.1 History 29116.1.2 Terminology 29116.2 Commercial Off-the-Shelf (COTS) Connectors 29216.2.1 Rubber-Molded 29216.2.2 Rigid-Shell or Bulkhead Assemblies 29316.2.3 Fluid-Filled UnderwaterMateable 29416.2.4 Inductive Coupling 29516.2.5 Assemblies (Non-unmateable) 29516.3 Connector Design 29616.3.1 Thermal Design 29616.3.2 Electrical Properties 29716.3.3 Mechanical Properties 29916.3.4 Material Choices 30016.3.5 Specifications for Underwater Connectors 30116.4 Connector Deployment and Operation 30216.4.1 Connection Procedure 30216.4.2 Connection Layout 30316.4.3 Reliability 30516.5 Discussion and Conclusion 305References 30617 Examples of Connectors 313Lei Su, Xiaonan Yu, San Kyeong andMichael G. Pecht17.1 Amphenol ICC M-Series(TM) 56 Connectors 31317.2 Amphenol ICC Paladin(r)Connectors 31317.3 Amphenol ICC 3000W EnergyEdge(TM) X-treme Card Edge Series 31417.4 Amphenol ICC FLTStack Connectors 31417.5 Amphenol ICC HSBridge Connector System 31517.6 Amphenol ICC MUSBR Series USB 3.0 Type-A Connectors 31517.7 Amphenol ICCWaterproof USB Type-C(TM) Connectors 31617.8 Amphenol ICC NETBridge(TM) Connectors 31617.9 Amphenol Sine Systems DuraMate(TM) AHDP Circular Connectors 31717.10 Amphenol Aerospace MIL-DTL-38999 Series III Connectors 31817.11 Fischer Connectors UltiMate(TM) Series Connectors 31817.12 Hirose Electric DF50 Series Connectors 31917.13 Hirose Electric microSD(TM) Card Connectors 32017.14 Molex SAS-3 and U.2 (SFF-8639) Backplane Connectors 32017.15 Molex NeoPress(TM) Mezzanine Connectors 32117.16 Molex Impel(TM) Plus Backplane Connectors 32117.17 Molex EXTreme Guardian(TM) Power Connectors 32217.18 Molex Imperium(TM) High Voltage/High Current Connectors 32317.19 TE Connectivity Free Height Connectors 32317.20 TE Connectivity STRADAWhisper Connectors 32317.21 TE ConnectivityMULTI-BEAM High-Density (HD) Connectors 32417.22 TE Connectivity HDMI(TM) Connectors 32517.23 TE Connectivity AMP CT Connector Series 32517.24 TE ConnectivityMicro Motor Connectors 32617.25 TE Connectivity AMPSEAL Connectors 32617.26 TE Connectivity M12 X-Code Connectors 32717.27 TE Connectivity SOLARLOK 2.0 Connectors 32717.28 TE Connectivity Busbar Connectors 328References 329AppendixStandards 331A.1 Standard References for Quality Management and Assurance 332A.2 General Specifications for Connectors 332A.3 Safety-Related Standards and Specifications 332A.4 Standard References for Connector Manufacturing 333A.5 Standard References for Socket Material Property Characterization 334A.6 Standard References for Socket Performance Qualification 335A.7 Standard References for Socket Reliability Qualification 336A.8 Other Standards and Specifications 338A.9 Telcordia 338A.10 Society of Cable Telecommunications Engineers (SCTE) 339A.11 Electronic Industries Alliance/Telecommunications Industry Association (EIA/TIA) 339A.12 International Electrotechnical Commission (IEC) 340A.12.1 IEC Standards 341A.12.2 IEC Connectors 341A.13 Military Standards (MIL-STD) 341A.14 Standards for Space-Grade Connectors 342References 345Index 347
SAN KYEONG is a staff engineer at the R&D headquarters of Samsung Electro-Mechanics Company, currently working as a Research Scientist with the Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, USA. He received a BE degree and PhD in chemical and biological engineering from the Seoul National University of Seoul, South Korea, in 2010 and 2016, respectively. He has expertise in material engineering for passive electronic components.MICHAEL G. PECHT, PHD, is Chair Professor and Director of the Center for Advanced Life Cycle Engineering (CALCE) at the University of Maryland, USA. He received his PhD in Engineering Mechanics from the University of Wisconsin at Madison, USA. He is an IEEE, ASME, SAE, and IMAPS Fellow.
1997-2025 DolnySlask.com Agencja Internetowa





