I. Holomorphe Funktionen.- Vorbemerkungen.- § 1. Potenzreihen.- § 2. Komplex differenzierbare Funktionen.- § 3. Das Cauchy-Integral.- § 4. Identitätssätze.- § 5. Entwicklung in Reinhardtschen Körpern.- § 6. Reelle und komplexe Differenzierbarkeit.- § 7. Holomorphe Abbildungen.- II. Holomorphiegebiete.- § 1. Der Kontinuitätssatz.- § 2. Pseudokonvexität.- § 3. Holomorphiekonvexität.- § 4. Der Satz von Thullen.- § 5. Holomorph-konvexe Gebiete.- § 6. Beispiele.- § 7. Riemannsche Gebiete über dem ?n.- § 8. Holomorphiehüllen.- III. Der Weierstraßsche Vorbereitungssatz.- § 1. Potenzreihenalgebren.- § 2. Die Weierstraßsche Formel.- § 3. Konvergente Potenzreihen.- § 4. Primfaktorzerlegung.- § 5. Weitere Folgerungen (Henselsche Ringe, Noethersche Ringe).- § 6. Analytische Mengen.- IV. Garbentheorie.- § 1. Garben von Mengen.- § 2. Garben mit algebraischen Strukturen.- § 3. Analytische Garbenmorphismen.- § 4. Kohärente Garben.- V. Komplexe Mannigfaltigkeiten.- § 1. Komplex-beringte Räume.- § 2. Funktionentheorie auf komplexen Mannigfaltigkeiten.- § 3. Beispiele komplexer Mannigfaltigkeiten.- § 4. Abschlüsse des ?n.- VI. Cohomologietheorie.- § 1. Die welke Cohomologie.- § 2. Die ?echsche Cohomologie.- § 3. Doppelkomplexe.- § 4. Die Cohomologiesequenz.- § 5. Hauptsätze über Steinsche Mannigfaltigkeiten.- VIII. Reelle Methoden.- § 1. Tangentialvektoren.- § 2. Differentialformen auf komplexen Mannigfaltigkeiten.- § 3. Cauchy-Integrale.- § 4. Das Lemma von Dolbeault.- § 5. Feine Garben (Sätze von Dolbeault und de Rham).- Symbolverzeichnis.
Hans Grauert studierte in Münster und Zürich, wo er 1958 promovierte. Seit dem 1. Oktober 1959 war er bis zu seiner Emeritierung ordentlicher Professor in Göttingen. Er hatte Gastprofessuren u.a. in Princeton und Paris. Er gilt als einer der bedeutendsten deutschen Mathematiker der Nachkriegszeit. Sein Spezialgebiet ist die Funktionentheorie mehrerer 'Veränderlicher'.