• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Eine Entdeckungsreise in die Welt des Unendlichen » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950560]
• Literatura piękna
 [1849509]

  więcej...
• Turystyka
 [71097]
• Informatyka
 [151150]
• Komiksy
 [35848]
• Encyklopedie
 [23178]
• Dziecięca
 [617388]
• Hobby
 [139064]
• AudioBooki
 [1657]
• Literatura faktu
 [228597]
• Muzyka CD
 [383]
• Słowniki
 [2855]
• Inne
 [445295]
• Kalendarze
 [1464]
• Podręczniki
 [167547]
• Poradniki
 [480102]
• Religia
 [510749]
• Czasopisma
 [516]
• Sport
 [61293]
• Sztuka
 [243352]
• CD, DVD, Video
 [3414]
• Technologie
 [219456]
• Zdrowie
 [101002]
• Książkowe Klimaty
 [124]
• Zabawki
 [2311]
• Puzzle, gry
 [3459]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8079]
Kategorie szczegółowe BISAC

Eine Entdeckungsreise in die Welt des Unendlichen

ISBN-13: 9783662680933 / Niemiecki / Miękka / 2023

Lorenz Halbeisen;Regula Krapf
Eine Entdeckungsreise in die Welt des Unendlichen Lorenz Halbeisen, Regula Krapf 9783662680933 Springer Berlin Heidelberg - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Eine Entdeckungsreise in die Welt des Unendlichen

ISBN-13: 9783662680933 / Niemiecki / Miękka / 2023

Lorenz Halbeisen;Regula Krapf
cena 123,82
(netto: 117,92 VAT:  5%)

Najniższa cena z 30 dni: 108,08
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

Das Buch nimmt die Leserschaft mit auf eine Entdeckungsreise in die Welt des Unendlichen. Es wird aufgezeigt, wie das Unendliche von der Antike bis in die Neuzeit immer wieder Quell der Inspiration war, um die Mathematik auf feste Grundlagen zu stellen. Von der Entdeckung der irrationalen Zahlen in der Antike führt das Buch über Dedekinds Konstruktion der reellen Zahlen sowie Cantors und Zermelos Mengenlehre bis zum Banach-Tarski-Paradoxon und Conways spielerischer Konstruktion der surreellen Zahlen.
Die Entdeckung, dass sich nicht jedes Verhältnis von zwei Streckenlängen als Verhältnis ganzer Zahlen ausdrücken lässt, hat gezeigt, dass sich nicht jede reelle Zahl durch einen endlichen Term ausdrücken lässt, sondern dass es dazu etwas Unendliches braucht. Solch eine Darstellung wurde aber erst zwei Jahrtausende später durch Dedekind gefunden. Kurze Zeit nach Dedekinds Konstruktion der reellen Zahlen hat Cantor eine Theorie entwickelt, die Mengenlehre, in der mit verschiedenen Unendlichkeiten gerechnet werden kann. Diese Theorie wurde später von Zermelo auf ein axiomatisches Fundament gestellt, auf dem die moderne Mathematik aufgebaut ist.

Die Reise wird immer wieder aufgelockert durch zahlreiche Beispiele und Übungsaufgaben, welche dabei helfen, den Text zu verstehen. Die Voraussetzungen sind so gewählt, dass das Buch bereits für Studierende mit geringen Vorkenntnissen zugänglich ist. Entstanden im Rahmen einer Vorlesung fürs Lehramt, richtet sich dieses Buch ganz besonders auch an Lehramtsstudierende.

Kategorie:
Nauka, Matematyka
Wydawca:
Springer Berlin Heidelberg
Język:
Niemiecki
ISBN-13:
9783662680933
Rok wydania:
2023
Waga:
0.47 kg
Wymiary:
23.5 x 15.5
Oprawa:
Miękka
Dodatkowe informacje:
Wydanie ilustrowane

Vorwort.- 1 Unendlichkeit in der Antike.- 2 Konstruktion der reellen Zahlen.- 3 Irrationalität und Transzendenz.- 4 Unendliche Mengen.- 5 Gleichmächtigkeit.- 6 Kardinalitäten und Wohlordnungen.- 7 Das Auswahlaxiom.- 8 Das Banach-Tarski-Paradoxon.- 9 Axiome der Mengenlehre.- 10 Ordinalzahlen.- 11 Kardinalzahlen.- 12 Modelle der Mengenlehre.- 13 Permutationsmodelle.- 14 Der Satz von Ramsey.- 15 Spiele und Gewinnstrategien.- 16 Determiniertheit unendlicher Spiele.- 17 Die surreellen Zahlen.- Literaturverzeichnis.- Index.

Lorenz Halbeisen hat an der ETH Zürich in mathematischer Logik promoviert. Er war mehrere Jahre für Forschungsaufenthalte in Caen, Barcelona und Berkeley, war Lecturer an der Queen's University Belfast, und hat während acht Jahren an Gymnasien in der Schweiz unterrichtet. Seit 2014 ist er an der ETH Zürich, wo er unter anderem in der Gymnasiallehrerausbildung tätig ist.

Regula Krapf hat an der Universität Bonn in mathematischer Logik promoviert. Im Anschluss hat sie einige Jahre an der Universität Koblenz-Landau als wissenschaftliche Mitarbeiterin gearbeitet. Seit 2021 ist sie als Akademische Rätin an der Universität Bonn tätig und hält insbesondere Mathematiklehrveranstaltungen für Lehramtsstudierende.

Das Buch nimmt die Leserschaft mit auf eine Entdeckungsreise in die Welt des Unendlichen. Es wird aufgezeigt, wie das Unendliche von der Antike bis in die Neuzeit immer wieder Quell der Inspiration war, um die Mathematik auf feste Grundlagen zu stellen. Von der Entdeckung der irrationalen Zahlen in der Antike führt das Buch über Dedekinds Konstruktion der reellen Zahlen sowie Cantors und Zermelos Mengenlehre bis zum Banach-Tarski-Paradoxon und Conways spielerischer Konstruktion der surreellen Zahlen.


Die Entdeckung, dass sich nicht jedes Verhältnis von zwei Streckenlängen als Verhältnis ganzer Zahlen ausdrücken lässt, hat gezeigt, dass sich nicht jede reelle Zahl durch einen endlichen Term ausdrücken lässt, sondern dass es dazu etwas Unendliches braucht. Solch eine Darstellung wurde aber erst zwei Jahrtausende später durch Dedekind gefunden. Kurze Zeit nach Dedekinds Konstruktion der reellen Zahlen hat Cantor eine Theorie entwickelt, die Mengenlehre, in der mit verschiedenen Unendlichkeiten gerechnet werden kann. Diese Theorie wurde später von Zermelo auf ein axiomatisches Fundament gestellt, auf dem die moderne Mathematik aufgebaut ist.

Die Reise wird immer wieder aufgelockert durch zahlreiche Beispiele und Übungsaufgaben, welche dabei helfen, den Text zu verstehen. Die Voraussetzungen sind so gewählt, dass das Buch bereits für Studierende mit geringen Vorkenntnissen zugänglich ist. Entstanden im Rahmen einer Vorlesung fürs Lehramt, richtet sich dieses Buch ganz besonders auch an Lehramtsstudierende.

 

Die Autoren

Lorenz Halbeisen hat an der ETH Zürich in mathematischer Logik promoviert. Er war mehrere Jahre für Forschungsaufenthalte in Caen, Barcelona und Berkeley, war Lecturer an der Queen's University Belfast, und hat während acht Jahren an Gymnasien in der Schweiz unterrichtet. Seit 2014 ist er an der ETH Zürich, wo er unter anderem in der Gymnasiallehrerausbildung tätig ist.


Regula Krapf hat an der Universität Bonn in mathematischer Logik promoviert. Im Anschluss hat sie einige Jahre an der Universität Koblenz-Landau als wissenschaftliche Mitarbeiterin gearbeitet. Seit 2021 ist sie als Akademische Rätin an der Universität Bonn tätig und hält insbesondere Mathematiklehrveranstaltungen für Lehramtsstudierende.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia