Einleitung.- Motivation zur Finite-Elemente-Methode.- Stabelement.- Analogien zum Dehnstab.- Biegeelement.- Allgemeines 1D-Element.- Ebene und räumliche Rahmenstrukturen.- Balken mit Schubanteil.- Balken aus Verbundmaterial.- Nichtlineare Elastizität.- Plastizität.- Stabilität (Knickung).- Dynamik.- Spezialelemente.- Anhang.
Prof. Dr.-Ing. Markus Merkel
studierte Maschinenbau an der Universität Erlangen-Nürnberg und promovierte dort am Lehrstuhl für Technische Mechanik. Er ist seit 2004 Professor an der Hochschule Aalen und vertritt die Finite-Elemente-Methode in der Lehre.
Prof. Dr.-Ing. Andreas Öchsner
studierte Luft- und Raumfahrttechnik an der Universität Stuttgart und promovierte an der Universität Erlangen-Nürnberg. Er ist seit 2018 Professor für Maschinenbau an der Hochschule Esslingen und u.a. für die Ausbildung der Studierenden im Leichtbau und der Struktursimulation verantwortlich.
Die Finite-Elemente-Methode wird in dieser Einführung in ihrer Komplexität auf eindimensionale Elemente heruntergebrochen. Somit bleibt die mathematische Beschreibung weitgehend einfach und überschaubar.
Das Augenmerk liegt in jedem Kapitel auf der Erläuterung der Methode und deren Verständnis. Die Leser lernen, die Annahmen und Ableitungen bei verschiedenen physikalischen Problemstellungen in der Strukturmechanik zu verstehen und Möglichkeiten und Grenzen der Methode der Finiten Elemente kritisch zu beurteilen.
Diese Herangehensweise ermöglicht das methodische Verständnis wichtiger Themenbereiche, wie z.B. Plastizität oder Verbundwerkstoffe und gewährleistet einen einfachen Einstieg in weiterführende Anwendungsgebiete. Ausführliche durchgerechnete und kommentierte Beispiele und weiterführende Aufgaben mit Kurzlösung im Anhang unterstützen den Lernerfolg.
In der dritten Auflage dieses Lehrbuches ist das grundlegende Konzept zur Behandlung der Finite-Elemente-Methode mit eindimensionalen Fragestellungen erhalten geblieben.Zusätzlich aufgenommen wurde die Thermoelastizität, sowie zahlreiche Aufgaben mit Lösungen ergänzt.
Der Inhalt
Einleitung.- Motivation zur Finite-Elemente-Methode.- Stabelement.- Analogien zum Dehnstab.- Biegeelement.- Allgemeines 1D-Element.- Ebene und räumliche Rahmenstrukturen.- Balken mit Schubanteil.- Balken aus Verbundmaterial.- Nichtlineare Elastizität.- Plastizität.- Stabilität (Knickung).- Dynamik.- Spezialelemente.- Anhang.
Die Zielgruppen
Studierende und Berechnungsingenieure in der Berufspraxis
Die Autoren
Prof. Dr.-Ing. Markus Merkel
studierte Maschinenbau an der Universität Erlangen-Nürnberg und promovierte dort am Lehrstuhl für Technische Mechanik. Er ist seit 2004 Professor an der Hochschule Aalen und vertritt die Finite-Elemente-Methode in der Lehre.
Prof. Dr.-Ing. Andreas Öchsner
studierte Luft- und Raumfahrttechnik an der Universität Stuttgart und promovierte an der Universität Erlangen-Nürnberg. Er ist seit 2018 Professor für Maschinenbau an der Hochschule Esslingen und u.a. für die Ausbildung der Studierenden im Leichtbau und der Struktursimulation verantwortlich.