Electroencephalogram (EEG) and its background.- Significance of EEG signals in medical and health research.- Objectives and structures of the book.- Random sampling in the detection of epileptic EEG signals.- A novel clustering technique for the detection of epileptic seizures.- A statistical framework for classifying epileptic seizure from multi-category EEG signals.- Injecting principal component analysis with the OA scheme in the epileptic EEG signal classification.- Cross-correlation aided logistic regression model for the identification of motor imagery EEG signals in BCI applications.- Modified CC-LR Algorithm for identification of MI based EEG signals.- Improving prospective performance in the MI recognition: LS-SVM with tuning hyper parameters.- Comparative study: Motor area EEG and All-channels EEG.- Optimum allocation aided Naive Bayes based learning process for the detection of MI tasks.- Summary discussions on the methods, future directions and conclusions.