1. Introduction; 2. Preliminary; 3. Fundamental Theory and Algorithms of Edge Learning; 4. Communication-Efficient Edge Learning; 5. Computation Acceleration; 6. Efficient Training with Heterogeneous Data Distribution; 7. Security and Privacy Issues in Edge Learning Systems; 8. Edge Learning Architecture Design for System Scalability; 9. Incentive Mechanisms in Edge Learning Systems; 10. Edge Learning Applications.