• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Dynamical Phase Transitions in Chaotic Systems » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Dynamical Phase Transitions in Chaotic Systems

ISBN-13: 9789819922437 / Angielski

Edson Denis Leonel
Dynamical Phase Transitions in Chaotic Systems Edson Denis Leonel 9789819922437 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Dynamical Phase Transitions in Chaotic Systems

ISBN-13: 9789819922437 / Angielski

Edson Denis Leonel
cena 564,88 zł
(netto: 537,98 VAT:  5%)

Najniższa cena z 30 dni: 539,74 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania
Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Mathematical Analysis
Technology & Engineering > Mechanical
Science > Physics - Condensed Matter
Wydawca:
Springer
Seria wydawnicza:
Nonlinear Physical Science
Język:
Angielski
ISBN-13:
9789819922437

Posing the problems.- A Hamiltonian and a mapping.- A phenomenological description for chaotic diffusion.- A semi phenomenological description for chaotic diffusion.- A solution for the diffusion equation.- Characterization of a continuous phase transition in an area preserving map.- Scaling invariance for chaotic diffusion in a dissipative standard mapping.- Characterization of a transition from limited to unlimited diffusion.- Billiards with moving boundary.- Suppression of Fermi acceleration in oval billiard.- Suppressing the unlimited energy gain: evidences of a phase transition.

Edson Denis Leonel is a Professor of Physics at São Paulo State University, Rio Claro, Brazil. He has been dealing with scaling investigation since his Ph.D. in 2003, where the first scaling investigation in the chaotic sea for the Fermi-Ulam model was studied. His research group developed different approaches and formalisms to investigate and characterize the several scaling properties in a diversity types of systems ranging from one-dimensional mappings, passing to ordinary differential equations, cellular automata, meme propagations, and also in the time-dependent billiards. There are different types of transition we considered and discussed in these scaling investigations: (i) transition from integrability to non-integrability; (ii) transition from limited to unlimited diffusion; and (iii) production and suppression of Fermi acceleration. The latter approach involves the analytical solution of the diffusion equation. His group and he published more than 160 scientific papers in respected international journals, including three papers in Physical Review Letters. He is the Author of “Scaling Laws in Dynamical Systems” (2021) by Springer and Higher Education Press and two Portuguese books, one dealing with statistical mechanics (2015) and the other one dealing with nonlinear dynamics (2019), both edited by Blucher.

This book discusses some scaling properties and characterizes two-phase transitions for chaotic dynamics in nonlinear systems described by mappings. The chaotic dynamics is determined by the unpredictability of the time evolution of two very close initial conditions in the phase space. It yields in an exponential divergence from each other as time passes. The chaotic diffusion is investigated, leading to a scaling invariance, a characteristic of a continuous phase transition. Two different types of transitions are considered in the book. One of them considers a transition from integrability to non-integrability observed in a two-dimensional, nonlinear, and area-preserving mapping, hence a conservative dynamics, in the variables action and angle. The other transition considers too the dynamics given by the use of nonlinear mappings and describes a suppression of the unlimited chaotic diffusion for a dissipative standard mapping and an equivalent transition in the suppression of Fermi acceleration in time-dependent billiards.

This book allows the readers to understand some of the applicability of scaling theory to phase transitions and other critical dynamics commonly observed in nonlinear systems. That includes a transition from integrability to non-integrability and a transition from limited to unlimited diffusion, and that may also be applied to diffusion in energy, hence in Fermi acceleration. The latter is a hot topic investigated in billiard dynamics that led to many important publications in the last few years. It is a good reference book for senior- or graduate-level students or researchers in dynamical systems and control engineering, mathematics, physics, mechanical and electrical engineering.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia