• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Discrete Optimization with Interval Data: Minmax Regret and Fuzzy Approach » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950116]
• Literatura piękna
 [1816336]

  więcej...
• Turystyka
 [70365]
• Informatyka
 [151382]
• Komiksy
 [36157]
• Encyklopedie
 [23168]
• Dziecięca
 [611655]
• Hobby
 [135936]
• AudioBooki
 [1800]
• Literatura faktu
 [225852]
• Muzyka CD
 [388]
• Słowniki
 [2970]
• Inne
 [446238]
• Kalendarze
 [1179]
• Podręczniki
 [166839]
• Poradniki
 [469514]
• Religia
 [507394]
• Czasopisma
 [506]
• Sport
 [61426]
• Sztuka
 [242327]
• CD, DVD, Video
 [3461]
• Technologie
 [219652]
• Zdrowie
 [98967]
• Książkowe Klimaty
 [123]
• Zabawki
 [2482]
• Puzzle, gry
 [3735]
• Literatura w języku ukraińskim
 [264]
• Art. papiernicze i szkolne
 [7903]
Kategorie szczegółowe BISAC

Discrete Optimization with Interval Data: Minmax Regret and Fuzzy Approach

ISBN-13: 9783642097201 / Angielski / Miękka / 2010 / 220 str.

Adam Kasperski
Discrete Optimization with Interval Data: Minmax Regret and Fuzzy Approach Adam Kasperski 9783642097201 Springer-Verlag Berlin and Heidelberg GmbH &  - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Discrete Optimization with Interval Data: Minmax Regret and Fuzzy Approach

ISBN-13: 9783642097201 / Angielski / Miękka / 2010 / 220 str.

Adam Kasperski
cena 402,53
(netto: 383,36 VAT:  5%)

Najniższa cena z 30 dni: 385,52
Termin realizacji zamówienia:
ok. 16-18 dni roboczych.

Darmowa dostawa!

Operations research often solves deterministic optimization problems based on elegantand conciserepresentationswhereall parametersarepreciselyknown. In the face of uncertainty, probability theory is the traditional tool to be appealed for, and stochastic optimization is actually a signi?cant sub-area in operations research. However, the systematic use of prescribed probability distributions so as to cope with imperfect data is partially unsatisfactory. First, going from a deterministic to a stochastic formulation, a problem may becomeintractable. Agoodexampleiswhengoingfromdeterministictostoch- tic scheduling problems like PERT. From the inception of the PERT method in the 1950's, it was acknowledged that data concerning activity duration times is generally not perfectly known and the study of stochastic PERT was launched quite early. Even if the power of today's computers enables the stochastic PERT to be addressed to a large extent, still its solutions often require simplifying assumptions of some kind. Another di?culty is that stochastic optimization problems produce solutions in the average. For instance, the criterion to be maximized is more often than not expected utility. This is not always a meaningful strategy. In the case when the underlying process is not repeated a lot of times, let alone being one-shot, it is not clear if this criterion is realistic, in particular if probability distributions are subjective. Expected utility was proposed as a rational criterion from ?rst principles by Savage. In his view, the subjective probability distribution was - sically an artefact useful to implement a certain ordering of solutions.

Kategorie:
Technologie
Kategorie BISAC:
Mathematics > Matematyka stosowana
Technology & Engineering > Engineering (General)
Computers > Artificial Intelligence - General
Wydawca:
Springer-Verlag Berlin and Heidelberg GmbH &
Seria wydawnicza:
Studies in Fuzziness and Soft Computing
Język:
Angielski
ISBN-13:
9783642097201
Rok wydania:
2010
Dostępne języki:
Angielski
Numer serii:
000044347
Ilość stron:
220
Waga:
0.45 kg
Wymiary:
23.523.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01

Minmax Regret Combinatorial Optimization Problems with Interval Data.- Problem Formulation.- Evaluation of Optimality of Solutions and Elements.- Exact Algorithms.- Approximation Algorithms.- Minmax Regret Minimum Selecting Items.- Minmax Regret Minimum Spanning Tree.- Minmax Regret Shortest Path.- Minmax Regret Minimum Assignment.- Minmax Regret Minimum s???t Cut.- Fuzzy Combinatorial Optimization Problem.- Conclusions and Open Problems.- Minmax Regret Sequencing Problems with Interval Data.- Problem Formulation.- Sequencing Problem with Maximum Lateness Criterion.- Sequencing Problem with Weighted Number of Late Jobs.- Sequencing Problem with the Total Flow Time Criterion.- Conclusions and Open Problems.- Discrete Scenario Representation of Uncertainty.

In operations research applications we are often faced with the problem of incomplete or uncertain data. This book considers solving combinatorial optimization problems with imprecise data modeled by intervals and fuzzy intervals. It focuses on some basic and traditional problems, such as minimum spanning tree, shortest path, minimum assignment, minimum cut and various sequencing problems. The interval based approach has become very popular in the recent decade. Decision makers are often interested in hedging against the risk of poor (worst case) system performance. This is particularly important for decisions that are encountered only once. In order to compute a solution that behaves reasonably under any likely input data, the maximal regret criterion is widely used. Under this criterion we seek a solution that minimizes the largest deviation from optimum over all possible realizations of the input data.

The minmax regret approach to discrete optimization with interval data has attracted considerable attention in the recent decade. This book summarizes the state of the art in the area and addresses some open problems. Furthermore, it contains a chapter devoted to the extension of the framework to the case when fuzzy intervals are applied to model uncertain data. The fuzzy intervals allow a more sophisticated uncertainty evaluation in the setting of possibility theory.

This book is a valuable source of information for all operations research practitioners who are interested in modern approaches to problem solving. Apart from the description of the theoretical framework, it also presents some algorithms that can be applied to solve problems that arise in practice.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia