ISBN-13: 9783030001681 / Angielski / Twarda / 2018 / 264 str.
ISBN-13: 9783030001681 / Angielski / Twarda / 2018 / 264 str.
1 Introduction 1
2 Theory 7
2.1 Basicprinciplesofholography....................... 7
2.1.1 Classicholography ......................... 8
2.1.2 Fourierholography ......................... 10
2.1.3 Digitalholography ......................... 12
2.1.4 Computergeneratedholograms .................. 12
2.1.5 Numerical reconstruction of digital holograms . . . . . . . . . . 14
2.2 Phasesshiftingreconstructionmethods . . . . . . . . . . . . . . . . . . 15
2.2.1 Temporalphaseshiftingmethod. . . . . . . . . . . . . . . . . . 16
2.2.2 Spatialphaseshiftingtechniques . . . . . . . . . . . . . . . . . 18
2.3 Numeric propagation of the complex object wave . . . . . . . . . . . . 20
2.3.1 Digitalholographicmicroscopy . . . . . . . . . . . . . . . . . . 21
2.4 Benefits of the Partially Spatial Coherence for DHM . . . . . . . . . . . 23
2.4.1 SpatialFrequencyFiltering .................... 23
2.4.2 MultipleReflectionRemoval.................... 27
2.5.1 Differentmethodsofaddressing . . . . . . . . . . . . . . . . . . 29
2.5.2 Digital micromirror devices and liquid crystal SLMs . . . . . . . 30
2.5.3 Light modulators as holographic elements . . . . . . . . . . . . 32
2.6 Micromanipulationwithlight ....................... 34
2.6.1 Observationofthemomentum................... 35
2.6.2 Geometric optical explanation -Mie regime . . . . . . . . . . . 37
2.6.3 Wave optical analysis -Rayleigh regime . . . . . . . . . . . . . . 39
2.6.4 Features and influences of optical traps . . . . . . . . . . . . . . 39
2.6.5 Algorithms for generating optical trap patterns in Fourier plane 42
2.6.6 Calibrationofthetrapforces ................... 43
2.7 Dynamic holography for optical micromanipulation . . . . . . . . . . . 44
2.8 Applicationsofopticaltweezers ...................... 46
2.9 Diffractive and non-diffractive beam types . . . . . . . . . . . . . . . . 46
2.9.1 Gaussianbeams........................... 47
2.9.2 Besselbeams ............................ 48
2.9.3 Superpositionofbesselbeams................... 51
2.9.4 Laguerre............................... 56
2.9.5 Mathieubeams ........................... 57
2.9.6 Airybeams ............................. 59
3 State of the art 63
3.1 Systemsforopticaltraps.......................... 63
3.2 Imaging by means of digital holographic quantitative phase contrast methods................................... 64
3.3 Directlaserwritinglithography ...................... 653.4 Multifunctional combined microscopy systems . . . . . . . . . . . . . . 67
3.5 OverviewofHOT-systemsinresearch................... 67
4 Experimental investigations 69
4.0.1 Introduction -Objectives and Justifications . . . . . . . . . . . 694.1 Subsequent digital holographic focussing . . . . . . . . . . . . . . . . . 70
4.1.1 Autofocus strategies and application to phase distributions . . . 704.1.2 Haltonsampling .......................... 74
4.1.3 Experimentalinvestigations .................... 76
4.2 Digital Holographic Microscopy with partially coherent light sources . . 78
4.2.1 Optical Setups and Digital Holographic Reconstruction . . . . . 79
4.2.2 CoherentNoiseRemoval...................... 80
4.2.3 Experimental Demonstrations and Applications . . . . . . . . . 81 BiomedicalApplications ...................... 81 StudyofCellCultures ....................... 81
4.2.4 Adaptionofreconstructionmethods. . . . . . . . . . . . . . . . 82 Reconstruction with consideration of spectrum . . . . . . . . . . 83 Experimentalinvestigations .................... 85
4.2.5 Tayloringofcoherencelength ................... 88<
4.3 Application of atomic force microscopy in NMM-1 as reference system . 93
4.3.1 Introduction............................. 94
4.3.2 Propertiesofapplieddevices.................... 95 Nanopositioning and nanomeasuring machine . . . . . . . . . . 95 Integration of AFM-sensor into the NMM-1 . . . . . . . . . . . 96
4.3.3 Calibration ............................. 97
Demands .............................. 97
Nano-andmicroroughness..................... 98
Measurementstrategy ....................... 99
Correctionofverticaldrift..................... 99
4.3.4 Experimentalresults ........................103 Measurements on calibration gratings . . . . . . . . . . . . . . . 103 Applicationonopticalsurfaces ..................105
4.4 SimulationanddesignofHOTsetups...................1074.4.1 SystemRequirements........................107
4.4.2 Considerationsonopticaldesign. . . . . . . . . . . . . . . . . . 108
4.4.3 Investigations on experimental optical system . . . . . . . . . . 110 Moduleforopticaltweezers ....................111 Digital holographic phase contrast microscopy . . . . . . . . . . 115 Overallsystem ...........................115
4.4.4 Opticalsimulationwithraytracing . . . . . . . . . . . . . . . . 118
4.4.5 Optical properties of the calculated system . . . . . . . . . . . . 118 Tolerance analysis and sensitivity of optical setup . . . . . . . . 1204.4.6 Optomechanicalsetup .......................122
4.5 CharacterizationoftheSLM........................124
4.5.1 Calibrationoflinearphaseshift . . . . . . . . . . . . . . . . . . 125
4.5.2 Correction of the system inherent wavefront aberrations . . . . . 127
4.5.3 Addressing and reconstruction of holograms . . . . . . . . . . . 129
4.6 Characterizationoftheoverallsystem . . . . . . . . . . . . . . . . . . . 131
4.6.1 Wavefront based system optimization . . . . . . . . . . . . . . . 131
4.6.2 Generation of variable intensity patterns in the object plane . . 1344.6.3 Micromanipulation of microspheres . . . . . . . . . . . . . . . . 135
4.6.4 Determinationofthetrapforce . . . . . . . . . . . . . . . . . . 137
4.6.5 Imaging of biological cells using quantitative phase-contrast . . 138
4.6.6 Conclusionsandoutlook......................139
4.7 Integrationinnanopositioningsystem . . . . . . . . . . . . . . . . . . 141
4.7.1 Nano coordinate measuring machine . . . . . . . . . . . . . . . 142
4.7.2 Experimental investigations on sensor integration . . . . . . . . 142
4.8 Realisation and illustration of beam configurations . . . . . . . . . . . . 143
4.8.1 Bessel ................................144
4.8.2 Mathieu...............................145
4.8.3 Laguerre...............................149
4.8.4 Airy .................................150
4.9 Application of trapping patterns and optical torque . . . . . . . . . . . 151
4.10HOT-DHM-combination ..........................153
4.11 Direct laser writing with modified HOT-setup . . . . . . . . . . . . . . 164
4.12 Nanoantennaassistedtrapping . . . . . . . . . . . . . . . . . . . . . . . 167
5 Summary 171
6 Prospects 173
Bibliography 178
Appendix 204
A.1 Developedsoftware.............................204
A.1.1 ImplementedsoftwareforDHM..................204
A.1.2 ImplementedsoftwareforHOTs . . . . . . . . . . . . . . . . . . 207
A.1.3 OpenGL Code for hologram rendering . . . . . . . . . . . . . . 211
A.1.4 Graphical user interface for complex beam configurations . . . . 212
A.1.5 Extension of HOT-software for multifocal direct laser writing . . 214 Slicer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
A.2 Technicalinformation............................217
A.2.1 Optic simulation: System data of HOT-module . . . . . . . . . 217
A.2.2 Callibration using a wavefront sensor . . . . . . . . . . . . . . . 217A.2.3 Interferometrically determined form error of SLM . . . . . . . . 219
A.2.4 Photosofmoduleforopticaltrapping. . . . . . . . . . . . . . . 220
B.1 Specificationsofutilizedsystems ......................221
B.1.1 Supercontinuumlightsource ...................221
B.1.2 SpatialLightModulator(SLM) . . . . . . . . . . . . . . . . . . 225
B.1.3 Spectrometer ............................225
B.1.4 Lightpowermeters.........................225
B.1.5 Technical specifications of applied cameras . . . . . . . . . . . . 226
B.1.6 Piezoactuator ............................227
B.1.7 Resolutiontestchart........................227
B.1.8 Ultra-brightlightemittingdiodes . . . . . . . . . . . . . . . . . 228
B.1.9 Lambertemitters..........................230
B.1.10 CIE-classification of light sources . . . . . . . . . . . . . . . . . 230
B.2 Theoreticalbasics..............................231
B.2.1 Holographythroughoutthetime . . . . . . . . . . . . . . . . . . 231
B.2.2 Maxwellequations .........................233
B.3 WaveOptics.................................233
B.3.1 Fouriertransformandconvolution . . . . . . . . . . . . . . . . . 234
B.3.2 Spatial frequency transfer function and spatial impulse response ofpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
B.3.3 ExamplesofFresneldiffraction . . . . . . . . . . . . . . . . . . 236
B.3.4 Fraunhoferdiffraction .......................237
B.3.5 Fourier transforming property of ideal lenses . . . . . . . . . . . 240
B.3.6 Synopsis of further holographic reconstruction algorithms . . . . 242
B.3.7 Mathematical approximation of the refractive index . . . . . . . 243
B.3.8 Zernikepolynoms..........................244
B.3.9 ForbesPolynomials.........................247
B.3.10Gaussianoptics . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
List of abbreviations 253
List of Figures 254
List of Tables 258
Stephan Stuerwald studied Physics and Mathematics at the University of Muenster in Germany and the Université Paris Sud 11, prior to completing his diploma thesis at the Center for Biomedical Optics and Photonics at the University Medical Center of Muenster. He then moved to the Fraunhofer Institute in Aachen in 2008, where he was a Research Fellow for 2 years before becoming group leader for optical metrology. He has received a number of awards for his achievements in optics-related research at various optics and metrology conferences and also obtained a research excellence grant from the National Metrology Institute of Germany within the framework of the European Metrology Research Program (EMRP). He also became lecturer at RWTH University in 2009. Since then has lectured on topics including (optical) metrology in general, sensor techniques and data processing and biomedical physics. During his work at the Fraunhofer Institute he prepared his doctoral thesis on optical wave front metrology. In 2015 he joined the Optoelectronics Research group as a postdoc at the University of California Berkeley.
This book presents not only the simultaneous combination of optical methods based on holographic principles for marker-free imaging, real-time trapping, identification and tracking of micro objects, but also the application of substantial low coherent light sources and non-diffractive beams. It first provides an overview of digital holographic microscopy (DHM) and holographic optical tweezers as well as non-diffracting beam types for minimal-invasive, real-time and marker-free imaging as well as manipulation of micro and nano objects.
It then investigates the design concepts for the optical layout of holographic optical tweezers (HOTs) and their optimization using optical simulations and experimental methods. In a further part, the book characterizes the corresponding system modules that allow the addition of HOTs to commercial microscopes with regard to stability and diffraction efficiency. Further, based on experiments and microfluidic applications, it demonstrates the functionality of the combined setup, and discusses several types of non-diffracting beams and their application in optical manipulation. The book shows that holographic optical tweezers, including several non-diffracting beam types like Mathieu beams, combined parabolic and Airy beams, not only open up the possibility of generating efficient multiple dynamic traps for micro and nano particles with forces in the pico and nano newton range, but also the opportunity to exert optical torque with special beams like Bessel beams, which can facilitate the movement and rotation of particles by generating microfluidic flows. The last part discusses the potential use of a slightly modified DHM-HOT-system to explore the functionality of direct laser writing based on a two photon absorption process in a negative photoresist with a continuous wave laser
1997-2024 DolnySlask.com Agencja Internetowa