• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Differential and Riemannian Manifolds » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2898466]
• Literatura piękna
 [1826543]

  więcej...
• Turystyka
 [72361]
• Informatyka
 [151383]
• Komiksy
 [33936]
• Encyklopedie
 [22549]
• Dziecięca
 [607041]
• Hobby
 [144505]
• AudioBooki
 [1400]
• Literatura faktu
 [230416]
• Muzyka CD
 [190]
• Słowniki
 [2875]
• Inne
 [404329]
• Kalendarze
 [103]
• Podręczniki
 [161497]
• Poradniki
 [483764]
• Religia
 [508522]
• Czasopisma
 [250]
• Sport
 [61264]
• Sztuka
 [241374]
• CD, DVD, Video
 [3918]
• Technologie
 [213852]
• Zdrowie
 [102259]
• Książkowe Klimaty
 [121]
• Zabawki
 [2713]
• Puzzle, gry
 [172]
• Literatura w języku ukraińskim
 [267]
• Art. papiernicze i szkolne
 [147]
Kategorie szczegółowe BISAC

Differential and Riemannian Manifolds

ISBN-13: 9780387943381 / Angielski / Twarda / 1995 / 364 str.

Serge Lang
Differential and Riemannian Manifolds Serge Lang 9780387943381 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Differential and Riemannian Manifolds

ISBN-13: 9780387943381 / Angielski / Twarda / 1995 / 364 str.

Serge Lang
cena 346,16 zł
(netto: 329,68 VAT:  5%)

Najniższa cena z 30 dni: 327,68 zł
Termin realizacji zamówienia:
ok. 16-18 dni roboczych.

Darmowa dostawa!

This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Geometry - Differential
Mathematics > Mathematical Analysis
Mathematics > Topologia
Wydawca:
Springer
Seria wydawnicza:
Graduate Texts in Mathematics
Język:
Angielski
ISBN-13:
9780387943381
Rok wydania:
1995
Wydanie:
1995. Corr. 2nd
Numer serii:
000009678
Ilość stron:
364
Waga:
0.73 kg
Wymiary:
24.21 x 16.26 x 2.31
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

S. Lang

Differential and Riemannian Manifolds

"An introduction to differential geometry, starting from recalling differential calculus and going through all the basic topics such as manifolds, vector bundles, vector fields, the theorem of Frobenius, Riemannian metrics and curvature. Useful to the researcher wishing to learn about infinite-dimensional geometry."

-MATHEMATICAL REVIEWS

I Differential Calculus.- §1. Categories.- §2. Topological Vector Spaces.- §3. Derivatives and Composition of Maps.- §4. Integration and Taylor’s Formula.- §5. The Inverse Mapping Theorem.- II Manifolds.- §1. Atlases, Charts, Morphisms.- §2. Submanifolds, Immersions, Submersions.- §3. Partitions of Unity.- §4. Manifolds with Boundary.- III Vector Bundles.- §1. Definition, Pull Backs.- §2. The Tangent Bundle.- §3. Exact Sequences of Bundles.- §4. Operations on Vector Bundles.- §5. Splitting of Vector Bundles.- IV Vector Fields and Differential Equations.- §1. Existence Theorem for Differential Equations.- §2. Vector Fields, Curves, and Flows.- §3. Sprays.- §4. The Flow of a Spray and the Exponential Map.- §5. Existence of Tubular Neighborhoods.- §6. Uniqueness of Tubular Neighborhoods.- V Operations on Vector Fields and Differential Forms.- §1. Vector Fields, Differential Operators, Brackets.- §2. Lie Derivative.- $3. Exterior Derivative.- §4. The Poincaré Lemma.- §5. Contractions and Lie Derivative.- §6. Vector Fields and 1-Forms Under Self Duality.- §7. The Canonical 2-Form.- §8. Darboux’s Theorem.- VI The Theorem of Frobenius.- §1. Statement of the Theorem.- §2. Differential Equations Depending on a Parameter.- §3. Proof of the Theorem.- §4. The Global Formulation.- §5. Lie Groups and Subgroups.- VII Metrics.- §1. Definition and Functoriality.- §2. The Hilbert Group.- §3. Reduction to the Hilbert Group.- §4. Hilbertian Tubular Neighborhoods.- §5. The Morse—Palais Lemma.- §6. The Riemannian Distance.- §7. The Canonical Spray.- VIII Covariant Derivatives and Geodesics.- §1. Basic Properties.- §2. Sprays and Covariant Derivatives.- §3. Derivative Along a Curve and Parallelism.- §4. The Metric Derivative.- §5. More Local Results on the Exponential Map.- §6. Riemannian Geodesic Length and Completeness.- IX Curvature.- §1. The Riemann Tensor.- §2. Jacobi Lifts.- §3. Application of Jacobi Lifts to dexpx.- §4. The Index Form, Variations, and the Second Variation Formula.- §5. Taylor Expansions.- X Volume Forms.- §1. The Riemannian Volume Form.- §2. Covariant Derivatives.- §3. The Jacobian Determinant of the Exponential Map.- §4. The Hodge Star on Forms.- §5. Hodge Decomposition of Differential Forms.- XI Integration of Differential Forms.- §1. Sets of Measure 0.- §2. Change of Variables Formula.- §3. Orientation.- §4. The Measure Associated with a Differential Form.- XII Stokes’ Theorem.- §1. Stokes’ Theorem for a Rectangular Simplex.- §2. Stokes’ Theorem on a Manifold.- §3. Stokes’ Theorem with Singularities.- XIII Applications of Stokes’ Theorem.- §1. The Maximal de Rham Cohomology.- §2. Moser’s Theorem.- §3. The Divergence Theorem.- §4. The Adjoint of d for Higher Degree Forms.- §5. Cauchy’s Theorem.- §6. The Residue Theorem.- Appendix The Spectral Theorem.- §1. Hilbert Space.- §2. Functionals and Operators.- §3. Hermitian Operators.

Lang, Serge Professeur a Yale University... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia