• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Differential- Und Integralrechnung II: Differentialrechnung in Mehreren Veränderlichen Differentialgleichungen » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Differential- Und Integralrechnung II: Differentialrechnung in Mehreren Veränderlichen Differentialgleichungen

ISBN-13: 9783540086970 / Niemiecki / Miękka / 1978 / 230 str.

H. Grauert; W. Fischer
Differential- Und Integralrechnung II: Differentialrechnung in Mehreren Veränderlichen Differentialgleichungen Grauert, H. 9783540086970 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Differential- Und Integralrechnung II: Differentialrechnung in Mehreren Veränderlichen Differentialgleichungen

ISBN-13: 9783540086970 / Niemiecki / Miękka / 1978 / 230 str.

H. Grauert; W. Fischer
cena 187,64
(netto: 178,70 VAT:  5%)

Najniższa cena z 30 dni: 180,14
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

differenzierbar, wenn es eine in Xo stetige Abbildung x -+,1. von U in den dual en Raum Hom (JRn, JR) gibt, so daB /(x)=f(xo)+,1x(x-x ) o gilt. Diese Definition ilbertragt sich auf den Fall, wo Xo Punkt eines separierten topologischen Vektorraumes E ist und die Werte von f in einem ebensolchen Vektorraum F liegen. Man hat dazu den Raum Hom (E, F) der stetigen linearen Ab bildungen von E in F mit einer Pseudotopologie zu versehen 1: Man betrachtet z. B. genau die Filter auf Hom (E, F) als gegen 0 kon vergent, die folgende Eigenschaft haben: Fur jeden Filter auf Emit m. -+ 0 gilt ( ) -+ 0 in F. Dabei ist m der Filter der Nullumge bungen in JR, m. wird von den N A mit N E m und A E erzeugt, ( ) von den L (A) = u A. (A) mit L E und A E . Man kann nun die Differenzierbarkeit au wie oben definieren, nur ist unter x -+,1x jetzt eine in Xo stetige Abbildung von U in Hom (E, F) zu verstehen. Man zeigt: Da die naturliche Abbildung Hom(E, F)XE-+F stetig ist, ist,1xo eindeutig bestimmt und kann als Ableitung von f im Punkt Xo bezeichnet werden. Auch jetzt folgt aus der Differenzierbarkeit die Stetigkeit; es gilt die Kettenregel."

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Mathematical Analysis
Mathematics > Rachunek różniczkowy
Wydawca:
Springer
Seria wydawnicza:
Heidelberger Taschenba1/4cher
Język:
Niemiecki
ISBN-13:
9783540086970
Rok wydania:
1978
Wydanie:
3., Verb. Aufl.
Numer serii:
000364788
Ilość stron:
230
Waga:
0.29 kg
Oprawa:
Miękka
Wolumenów:
01

Erstes Kapitel. Wege im ?n.- § 1. Der n-dimensionale Raum.- § 2. Wege.- § 3. Bogenlänge.- § 4. Der ausgezeichnete Parameter.- § 5. Spezielle Kurven.- § 6. Tangente und Krümmung.- Zweites Kapitel. Topologie des ?n.- § 1. Umgebungen.- § 2. Kompakte Mengen.- § 3. Punktfolgen.- § 4. Funktionen. Stetigkeit.- § 5. Funktionenfolgen.- § 6. Abbildungen.- Drittes Kapitel. Differentialrechnung mehrerer Veränderlichen.- § 1. Differenzierbarkeit.- § 2. Elementare Regeln.- § 3. Ableitungen höherer Ordnung.- § 4. Die Taylorsche Formel.- § 5. Die Taylorsche Reihe.- § 6. Lokale Extrema.- § 7. Einige unendlich oft differenzierbare Funktionen.- Viertes Kapitel. Tangentialvektoren und reguläre Abbildungen.- § 0. Einiges aus der linearen Algebra.- § 1. Derivationen.- § 2. Transformation von Tangentialvektoren.- § 3. Pfaffsche Formen.- § 4. Reguläre Abbildungen.- § 5. Umkehrabbildungen.- § 6. Gleichungssysteme und implizite Funktionen.- § 7. Extrema bei Nebenbedingungen.- Fünftes Kapitel. Einige Typen gewöhnlicher Differentialgleichungen.- § 1. Gewöhnliche Differentialgleichungen erster Ordnung.- § 2. Lineare Differentialgleichungen erster Ordnung.- § 3. Variablentransformation.- § 4. Die Riccatische Differentialgleichung.- § 5. Allgemeine Klassen von Differentialgleichungen.- § 6. Komplexwertige Funktionen.- § 7. Die homogene lineare Differentialgleichung zweiter Ordnung mit konstanten Koeffizienten.- Sechstes Kapitel. Existenzsätze.- § 1. Gleichartig stetige Funktionen.- § 2. Der Existenzsatz von Peano.- § 3. Die Lipschitz-Bedingung.- § 4. Verlauf der Integralkurven im Großen.- § 5. Abhängigkeit der Lösungen von den Anfangsbedingungen.- § 6. Die allgemeine Lösung.- § 7. Die Stammfunktion einer Differentialgleichung.- Siebtes Kapitel. Lösungsmethoden.- § 1. Pfaffsche Formen.- § 2. Reguläre Punkte einer Pfaffschen Form.- § 3. Der Eulersche Multiplikator.- § 4. Differenzierbare Transformationen.- § 5. Singularitäten Pfaffscher Formen.- § 6. Das Iterationsverfahren von Picard und Lindelöf.- § 7. Lösung durch Potenzreihenansatz.- Achtes Kapitel. Systeme von Differentialgleichungen, Differentialgleichungen höherer Ordnung.- § 1. Systeme von expliziten Differentialgleichungen erster Ordnung — Existenz- und Eindeutigkeitssätze.- § 2. Lineare Systeme erster Ordnung.- § 3. Homogene lineare Systeme mit konstanten Koeffizienten.- § 4. Explizite gewöhnliche Differentialgleichungen höherer Ordnung.- § 5. Spezielle Differentialgleichungen zweiter Ordnung.- A. Die Besselsche Differentialgleichung.- B. Die Legendresche Differentialgleichung.- C. Die Schrödinger-Gleichung.- Literatur.- Wichtige Bezeichnungen.- Namen- und Sachverzeichnis.

Hans Grauert studierte in Münster und Zürich, wo er 1958 promovierte. Seit dem 1. Oktober 1959 war er bis zu seiner Emeritierung ordentlicher Professor in Göttingen. Er hatte Gastprofessuren u.a. in Princeton und Paris. Er gilt als einer der bedeutendsten deutschen Mathematiker der Nachkriegszeit. Sein Spezialgebiet ist die Funktionentheorie mehrerer 'Veränderlicher'.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia