Termin realizacji zamówienia: ok. 16-18 dni roboczych.
Darmowa dostawa!
Focuses on the interactive roles of subject matter, teacher, student, and technologies for designing classrooms that promote understanding of geometry and space.
"The text effectively moves the reader toward a geometry and space curriculum that may open doors for many students....The ideas in this book are of high quality, well communicated and extensively referenced. Although the book is very dense with complex ideas, the vision of teaching and learning about geometry and space and the many useful frameworks, summaries of theory, and rich examples make the text a useful resource." —Horizon Research
"...makes interesting reading for anyone nurturing an interest in the psychology of mathematics, especially for those involved in or contemplating research in the area....Hershkowitz's praise for ths work as pace-setter for change in mathematics education seems entirely justified....for a plethora of ideas about manipulation of visuospatial mathematical learning, look no further than the present volume." —American Journal of Psychology
"Chazan and Lehrer have produced an important book at an opportune time. It will guide researchers and teachers in re-establishing geometry as a 'non-skippable' part of every child's mathematical education." —Canadian Journal of Science
Contents: Preface. Part I: Why Teach Geometry?E.P. Goldenberg, A.A. Cuoco, J. Mark, A Role for Geometry in General Education. K. Gravemeijer, From a Different Perspective: Building on Students' Informal Knowledge. D. Chazan, M. Yerushalmy, Charting a Course for Secondary Geometry. R.L. Devaney, Chaos in the Classroom. Part II: Studies of Conceptual Development.J. Pegg, G. Davey, Interpreting Student Understanding in Geometry: A Synthesis of Two Models. R. Lehrer, M. Jenkins, H. Osana, Longitudinal Study of Children's Reasoning About Space and Geometry. R. Lehrer, C. Jacobson, G. Thoyre, V. Kemeny, D. Danneker, J. Horvath, S. Gance, M. Koehler, Developing Understanding of Space and Geometry in the Primary Grades. D.H. Clements, M.T. Battista, J. Sarama, Development of Geometric and Measurement Ideas. M.T. Battista, D.H. Clements, Students' Understanding of Three-Dimensional Cube Arrays: Findings From a Research and Curriculum Development Project. J.A. Middleton, R. Corbett, Sixth Grade Students' Conceptions of Stability in Engineering Contexts. K. Raghavan, M.L. Sartoris, R. Glaser, Interconnecting Science and Mathematics Concepts: Area and Volume. D. Dennis, J. Confrey, Geometric Curve-Drawing Devices as an Alternative Approach to Analytic Geometry: An Analysis of the Methods, Voice, and Epistemology of a High School Senior. K.R. Koedinger, Conjecturing and Argumentation in High School Geometry Students. Part III: Defining a New Semantics of Space: Computers, Software, and the Electronic World.E.P. Goldenberg, A.A. Cuoco, What Is Dynamic Geometry? M. de Villiers, An Alternative Approach to Proof in Dynamic Geometry. J. Olive, Opportunities to Explore and Integrate Mathematics With the Geometer's Sketchpad. D.L. Watt, Mapping the Classroom Using CAD Program: Geometry as Applied Mathematics. L. Zech, N.J. Vye, J.D. Bransford, S.R. Goldman, B.J. Barron, D.L. Schwartz, R. Kisst-Hackett, C. Mayfield-Stewart, The Cognition and Technology Group at Vanderbilt, An Introduction to Geometry Through Anchored Instruction. K.A. Renninger, S.A. Weimar, E.A. Klotz, Teachers and Students Investigating and Communicating About Geometry: The Math Forum.