ISBN-13: 9781119564546 / Angielski / Twarda / 2019 / 336 str.
ISBN-13: 9781119564546 / Angielski / Twarda / 2019 / 336 str.
About the Book xiiiPreface xvList of Acronyms xvii1 Introduction 11.1 Overview 11.2 SAR Applications 31.2.1 Military Applications 31.2.1.1 Military Intelligence 41.2.1.2 Moving Target Detection 41.2.1.3 Military Topography and Mapping 41.2.1.4 Detection of Marine Meteorology and Hydrology 51.2.2 Civil Applications 51.2.2.1 Geological Exploration 51.2.2.2 Oceanographic Research 51.2.2.3 Forestry Research 51.2.2.4 Deformation Monitoring 61.3 Features of SAR 61.3.1 Radar Loading Platforms 61.3.2 Radar System 71.3.3 Information and Intelligence Processing 81.4 New Technologies of SAR 81.4.1 Digital Array Technology 91.4.2 MIMO Technology 101.4.3 Microwave Photonic Technology 111.4.4 Miniaturization 12References 122 Radar System Design 152.1 Overview 152.2 Radar Equations 172.2.1 Conventional Radar Equation 172.2.2 SAR Equation 182.3 Radar System Parameters 202.3.1 Antenna and Channel Number 202.3.1.1 Reflector Antenna 222.3.1.2 Planar Array Antenna 232.3.1.3 Single-Input, Single-Output 252.3.1.4 Single-Input, Multiple-Output 252.3.1.5 Multiple-Input, Multiple-Output 282.3.2 Antenna Size 292.3.2.1 Ambiguity Limit 292.3.2.2 Swath Width and Resolution Limit 302.3.2.3 NE sigma 0 Restriction 302.3.3 Resolution and Swath Width 302.3.3.1 Resolution 302.3.3.2 Swath Width 312.3.4 Pulse Repetition Frequency 312.3.4.1 Doppler Bandwidth 332.3.4.2 Data Reception Interspersed with Transmitting Event 342.3.4.3 Avoiding Nadir Echo 352.3.5 Ambiguity 352.3.5.1 Range Ambiguity 362.3.5.2 Azimuth Ambiguity 372.3.6 Beam Position Design 382.3.6.1 Range Direction Beam Width 392.3.6.2 Instantaneous Signal Bandwidth 402.3.6.3 Swath Position Selection 402.4 Imaging Mode 402.4.1 Strip-Map Mode 412.4.1.1 Signal Model 412.4.1.2 Resolution and Swath Width 432.4.2 Scanning Mode 442.4.2.1 Sequential Relationship 452.4.2.2 Signal Model 462.4.2.3 Resolution and Swath Width 462.4.2.4 Scalloping Effect 472.4.3 Spotlight Mode 482.4.3.1 Signal Characteristics 492.4.3.2 Resolution 492.4.4 Sliding Spotlight Mode 502.4.4.1 Signal Model 512.4.4.2 Resolution and Swath Width 522.4.5 Mosaic Mode 532.4.5.1 Sequential Relationship 532.4.5.2 Signal Characteristics 552.4.5.3 Resolution 552.4.6 TOPS Mode 552.4.6.1 Sequential Relationship 562.4.6.2 Signal Characteristics 572.4.6.3 Azimuth Resolution 572.5 Moving Target Working Mode 592.5.1 GMTI 592.5.1.1 Signal Characteristics 602.5.1.2 MDV 622.5.1.3 Azimuth Angle Measurement Accuracy 632.5.1.4 Detection Capability 642.5.2 Marine Moving Target Indication 652.5.2.1 Signal Characteristics 652.5.2.2 Operating Range 672.5.2.3 Detection Rate and False Alarm Rate 682.5.3 Airborne Moving Target Indication 682.5.3.1 Signal Characteristics 692.5.3.2 Operating Range of Airborne Target 712.5.3.3 Minimum Detectable Velocity of the Moving Target 71References 723 Antenna System 753.1 Overview 753.2 Antenna Design and Analysis 763.2.1 Basic Parameters 773.2.1.1 Bandwidth 773.2.1.2 Scanning Range 773.2.1.3 Beam Width 773.2.1.4 Antenna Gain 783.2.1.5 Side Lobe Level 783.2.2 Antenna Aperture Size 783.2.2.1 From the Ambiguity Point of View 783.2.2.2 Resolution Limitation 803.2.2.3 Swath Width Limitation 803.2.2.4 System Sensitivity Limitation 803.2.3 Scanning Feature 813.2.4 Internal Calibration 833.3 Antenna Array 853.3.1 Microstrip Patch Antenna 853.3.1.1 Microstrip Antenna Analysis 863.3.1.2 Microstrip Antenna Design 873.3.2 Dipole Antenna 923.3.2.1 Antenna Element Structure 933.3.2.2 Theoretic Analysis 933.3.2.3 Typical Example 953.3.3 Waveguide Slot Antenna 963.3.3.1 Theoretical Analysis 983.3.3.2 Computational Method 993.3.3.3 Typical Example 1003.4 Airborne Antenna Structure 1023.4.1 Airborne Antenna Environment Condition 1033.4.2 Airborne Antenna Structure Design 1043.5 Spaceborne Antenna Structure 1053.5.1 Spaceborne Antenna Environment Requirements 1063.5.1.1 Mechanical Environment 1063.5.1.2 Weightlessness 1063.5.1.3 Vacuum State 1063.5.1.4 Temperature Variation 1063.5.1.5 Space Radiation Environment 1073.5.2 Antenna Structure and Mechanism Design 1073.5.2.1 Analysis of Structure and Mechanism Design 1083.5.2.2 Structure and Mechanism Materials 1093.5.2.3 Structure and Mechanism Testing 110References 1104 Transmit/Receive Module 1134.1 Overview 1134.2 Basic Demands 1144.2.1 Amplitude and Phase Accuracy 1144.2.2 Amplitude and Phase Consistency 1144.2.3 Assembly Adaptability of Antenna Arrays 1154.2.3.1 Single-Channel and Multichannel Configurations 1154.2.3.2 Feeding and Assembling Method 1164.2.4 Reliability 1174.3 T/R Module Design 1184.3.1 Electrical Design 1194.3.1.1 Receiver 1194.3.1.2 Transmitter 1224.3.1.3 Beam Steering and Electric Interface 1244.3.1.4 Power Supply and Time Sequence 1254.3.2 Structure Design 1264.3.2.1 Physical Interface 1264.3.2.2 Thermal Dissipation 1264.3.2.3 Protection of the T/R Module 1304.3.3 EMC 1304.3.3.1 Self-Oscillation and Cavity Effect 1314.3.3.2 Power Integrity 1324.3.3.3 Grounding and Slot Coupling 1334.3.3.4 Electrostatic Prevention 1334.3.3.5 Electrical Wiring 1344.3.4 Environment Adaptability 1344.3.4.1 Mechanical Environment 1354.3.4.2 Thermal Environment 1354.3.4.3 Total Dose 1354.3.4.4 Micro-Discharge 1364.4 T/R Module Components 1384.4.1 Amplifier 1384.4.1.1 LNA 1384.4.1.2 Power Amplifier 1404.4.2 Microwave Control Device 1424.4.2.1 Attenuator 1424.4.2.2 Phase Shifter 1434.4.2.3 Transceiver Switch 1454.4.2.4 Limiter 1464.4.2.5 Circulator/Isolator 1474.4.3 Wave and Time Sequential Control Device 1484.4.3.1 Serial-to-Parallel Converter 1484.4.3.2 Power Supply Modulator 1494.5 T/R Module Manufacture 1504.5.1 Package 1514.5.2 Substrate 1514.5.2.1 Composite Dielectric Microstrip Substrate 1524.5.2.2 Ceramic Microstrip Substrate 1524.5.2.3 LTCC 1524.5.2.4 Aluminum Nitride Ceramic 1524.5.2.5 Composite Laminated Multilayer Microstrip Substrate 1534.5.3 Micro-Assembly Technology 1544.5.3.1 Eutectic Bonding 1544.5.3.2 Large-Area Substrate Bonding 1554.5.3.3 Glue and Attachment 1554.5.3.4 Wire Bonding 1554.5.3.5 Micro-Assembly Procedure 1564.5.4 Hermetic Package 1564.5.5 Testing and Debugging 157References 1595 Receiver Technology 1615.1 Overview 1615.1.1 Digitization 1615.1.2 Microelectronics 1625.1.3 Receiver Classification 1625.1.4 Basic Parameters 1635.1.4.1 Signal Bandwidth 1635.1.4.2 Sensitivity and Noise Figure 1645.1.4.3 Gain and Dynamic Range 1645.1.4.4 Amplitude and Phase Distortion 1655.1.4.5 Multichannel Amplitude and Phase Stability and Consistency 1655.1.4.6 Frequency Stability 1655.2 Receiver Technology 1655.2.1 Analog Demodulation Receiver 1665.2.2 Digital Demodulation Receiver 1675.2.2.1 Oversampling Technology 1685.2.2.2 Quadrature Sampling Technology 1685.2.2.3 Digital Mixing and Low-Pass Filtering 1695.2.2.4 Digital Interpolation 1695.2.2.5 Hilbert Transform 1705.2.3 Dechirp Receiver 1715.2.4 Multiband Receiver 1715.2.5 Multichannel Receiver 1725.2.6 Monolithic Receiver 1735.2.6.1 MCM Design 1755.2.6.2 Multilayer Substrate 1755.2.6.3 Design of MCM Mounting 1765.3 Frequency Synthesizer Source 1775.3.1 Direct Analog Frequency Synthesis 1785.3.2 Phase-Locked Frequency Synthesis 1795.3.3 DDS 1815.3.4 Antivibration Characteristic of Frequency Synthesizer 1835.4 Wideband Waveform Generation 1845.4.1 DDS-Based Direct Waveform Generation 1855.4.2 Parallel DDS IF Waveform Generation 1865.4.3 Digital Baseband Waveform Generation 1875.4.4 Multiplex Splicing Waveform Generation 1895.4.5 Sub-Band Concurrent Wideband Waveform Generation 190References 1916 Signal Processing 1936.1 Overview 1936.2 SAR Signal Processing Method 1936.2.1 Time Domain Correlation 1936.2.2 Frequency Domain Matched Filtering 1946.2.3 Spectrum Analysis Method 1946.3 Operating Mode and Signal Property 1946.3.1 Azimuth Antenna Scanning 1956.3.2 Range Antenna Scanning 1976.3.3 2D Antenna Scanning 1976.4 SAR Imaging 1996.4.1 SAR Echo 1996.4.2 Imaging Algorithm 2006.5 Doppler Parameter Estimation and Motion Compensation 2016.5.1 Doppler Parameter Estimation 2016.5.1.1 Estimation of Doppler Centroid 2016.5.1.2 Estimation of Doppler Ambiguity 2036.5.1.3 Estimation of Doppler Rate 2046.5.2 Motion Compensation 2056.5.2.1 Motion Compensation Based on Sensors 2066.5.2.2 Motion Compensation Based on Raw Data 2076.5.2.3 Motion Compensation Based on Image Data 2086.6 Typical Examples 2096.6.1 High-Resolution Imaging 2096.6.1.1 Ultra-wideband Synthesis in Range 2096.6.1.2 High-Resolution Compression in Azimuth 2116.6.1.3 Motion Error Estimation and Compensation 2136.6.1.4 High-Resolution Imaging Process and Results 2136.6.2 Ground Moving Target Indication 2136.6.2.1 DPCA and ATI 2156.6.2.2 CSI 2166.6.2.3 Three Doppler Transform STAP 2176.6.2.4 Comparison 2216.6.2.5 Results of SAR/GMTI 2226.6.3 Marine Moving Target Indication 2246.6.3.1 Frequency-Agile Noncoherent Processing 2256.6.3.2 Filter Bank Method for Fixed-Frequency-Coherent MTD 2266.6.4 Airborne Moving Target Indication 2286.6.4.1 Beam-Space STAP Before Doppler Filtering 2306.6.4.2 Beam-Domain STAP After Doppler Filtering 2316.7 SAR Signal Processor 2356.7.1 System Architecture 2366.7.2 Processing Architecture 2376.7.3 Development Architecture 2396.7.4 Processing Module 2406.7.4.1 Signal Processing Module 2406.7.4.2 Data Processing Module 2416.7.4.3 Mission Management Module 2426.7.5 Typical Signal Processor 242References 2467 Image Information Processing System 2497.1 Overview 2497.2 Target Detection 2507.2.1 Highly Scattering Target Detection 2507.2.2 Structure Target Detection 2537.2.3 Target Parameter Extraction 2557.2.4 Typical Examples 2577.3 Target Change Detection 2587.3.1 Preprocessing 2607.3.2 Difference Image Acquisition 2657.3.3 Difference Image Segmentation 2667.3.4 Artificial Auxiliary Intelligence Analysis 2677.3.5 Damage Assessment 2677.3.6 Typical Examples 2697.3.6.1 Detection of Mutual Change of Land and Water 2697.3.6.2 Change Detection of Vegetation Growth 2707.3.6.3 Change Detection of Urban Buildings 2717.3.6.4 Airport Change Detection 2737.4 Target Recognition 2737.4.1 Template Matching Recognition 2747.4.1.1 Target Segmentation Preprocessing 2757.4.1.2 Peak Feature Extraction 2787.4.1.3 Building Target Template Library 2787.4.1.4 Estimation of Target Azimuth Angle 2797.4.2 Statistical Pattern Recognition 2807.4.2.1 Technical Process 2817.4.2.2 PCA Feature Extraction 2827.4.3 Typical Examples 2847.5 Multisource SAR Image Fusion 2847.5.1 Image Fusion Method 2857.5.2 Fusion Effect Evaluation 2867.5.3 Typical Examples 2867.5.3.1 Target Detection of Multiband Vegetation Penetration 2877.5.3.2 Target Detection of Multiband Grassland Background 2877.5.3.3 Multiband Fusion Classification Analysis 2897.5.3.4 Multiband Marine Target Detection 2937.5.3.5 Multipolarization Building Detection 2947.5.3.6 Multipolarization Ship Detection 2947.6 Technology Outlook 2957.6.1 Research on Algorithm Engineering Application 2987.6.2 Research on Electromagnetic Simulation and Intelligent Target Recognition of the Target Image 2987.6.3 Research on SAR Image Information Processing System 303References 305Index 307
JIAGUO LU is a Research Fellow, East China Research Institute of Electric Engineering and PhD supervisor, Anhui University, University of Science and Technology of China. His main research field is antenna microwave and synthetic aperture radar system technology. For over 20 years, Professor Lu has been engaged in SAR technology and system research, such as satellite payload technology, airborne SAR/MTI technology, missile borne SAR technology, and optically controlled phased array antenna technology.
1997-2025 DolnySlask.com Agencja Internetowa