• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Deep Learning in Time Series Analysis » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Deep Learning in Time Series Analysis

ISBN-13: 9780367321789 / Angielski / Twarda / 2023 / 196 str.

Arash Gharehbaghi
Deep Learning in Time Series Analysis Arash Gharehbaghi 9780367321789 CRC Press - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Deep Learning in Time Series Analysis

ISBN-13: 9780367321789 / Angielski / Twarda / 2023 / 196 str.

Arash Gharehbaghi
cena 632,81 zł
(netto: 602,68 VAT:  5%)

Najniższa cena z 30 dni: 604,49 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania

The concept of deep machine learning is easier to understand by paying attention to the cyclic stochastic time series and a time series whose content is non-stationary not only within the cycles, but also over the cycles as the cycle-to-cycle variations.

Deep learning is an important element of artificial intelligence, especially in applications such as image classification in which various architectures of neural network, e.g., convolutional neural networks, have yielded reliable results. This book introduces deep learning for time series analysis, particularly for cyclic time series. It elaborates on the methods employed for time series analysis at the deep level of their architectures. Cyclic time series usually have special traits that can be employed for better classification performance. These are addressed in the book. Processing cyclic time series is also covered herein.

An important factor in classifying stochastic time series is the structural risk associated with the architecture of classification methods. The book addresses and formulates structural risk, and the learning capacity defined for a classification method. These formulations and the mathematical derivations will help the researchers in understanding the methods and even express their methodologies in an objective mathematical way. The book has been designed as a self-learning textbook for the readers with different backgrounds and understanding levels of machine learning, including students, engineers, researchers, and scientists of this domain. The numerous informative illustrations presented by the book will lead the readers to a deep level of understanding about the deep learning methods for time series analysis.

Kategorie:
Technologie
Kategorie BISAC:
Mathematics > Probability & Statistics - Time Series
Computers > Data Science - Data Modeling & Design
Science > Life Sciences - General
Wydawca:
CRC Press
Język:
Angielski
ISBN-13:
9780367321789
Rok wydania:
2023
Ilość stron:
196
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

PREFACE. I-FUNDAMENTALS OF LEARNING. Introduction to Learning. Learning Theory. Pre-processing and Visualisation. II ESSENTIALS OF TIME SERIES ANALYSIS. Basics of Time Series. Multi-Layer Perceptron (MLP) Neural Networks for Time Series Classification. Dynamic Models for Sequential Data Analysis. III DEEP LEARNING APPROACHES TO TIME SERIES CLASSIFICATION. Clustering for Learning at Deep Level. Deep Time Growing Neural Network. Deep Learning of Cyclic Time Series. Hybrid Method for Cyclic Time Series. Recurrent Neural Networks (RNN). Convolutional Neural Networks. Bibliography.

Arash Gharehbaghi obtained a M.Sc. degree in biomedical engineering from Amir Kabir University, Tehran, Iran, in 2000, an advanced M.Sc. of Telemedia from Mons University, Belgium, and PhD degree of biomedical engineering from Linköping University, Sweden in 2014. He is a researcher at the School of Information Technology, Halmstad University, Sweden. He has conducted several studies on signal processing, machine learning and artificial intelligence over two decades that led to the international patents, and publications in high prestigious scientific journals.

He has proposed new learning methods for learning and validating time series analysis, among which Time-Growing Neural Network, and A-Test are two recent ones that have interested the machine learning community. He won the first prize of young investigator award from the International Federation of Biomedical Engineering in 2014.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia