• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Data-driven Indirect Tool Condition Monitoring in Sheet-metal Stamping » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Data-driven Indirect Tool Condition Monitoring in Sheet-metal Stamping

ISBN-13: 9783985552597 / Angielski / Miękka / 172 str.

Martin Unterberg
Data-driven Indirect Tool Condition Monitoring in Sheet-metal Stamping Unterberg, Martin 9783985552597 Apprimus Verlag - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Data-driven Indirect Tool Condition Monitoring in Sheet-metal Stamping

ISBN-13: 9783985552597 / Angielski / Miękka / 172 str.

Martin Unterberg
cena 242,11 zł
(netto: 230,58 VAT:  5%)

Najniższa cena z 30 dni: 242,11 zł
Termin realizacji zamówienia:
ok. 10-14 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

The increasing scarcity of energy and the resulting rise in energy prices significantly impact operating costs in production facilities. This trend is particularly pronounced in sheet-metal stamping, where the use of higher-strength steels for lightweight construction leads to higher process friction, which increases the cost pressure on already tight margins due to unpredictably high tool wear. Due to the closed tool design, direct condition monitoring of sheet-metal stamping tools is not feasible. This dissertation addresses these challenges by presenting a systematic approach for data-driven indirect condition monitoring of sheet-metal stamping tools using acoustic emission signals. Acoustic emission sensors are suitable signal sources for tool condition monitoring due to their cost efficiency and high information content of the signals. However, acoustic emission signals are difficult to process and interpret due to their complexity. For this dissertation, 398,047 fineblanking process cycles from industrial and laboratory settings were acquired, preprocessed, and analyzed using a combination of machine learning and signal processing methods. Through domain-specific preprocessing, a process image representing the friction conditions between sheet metal and punch was isolated and exploratively analyzed. This data analysis revealed systematic patterns within and between the collected datasets that indicate a correlation with punch wear. To model the wear of the punch, a critical tool component, the quality of the sheared surface of the scrap web was observed and evaluated as a proxy variable for the punch wear in the laboratory setting. This proxy variable was used to generate labels for supervised machine learning models and to predict these labels from the acoustic emission data of the shearing and stripping phases of the fineblanking process. Evaluation of the models from a model performance and an explainable AI perspective, as well as analyses of the punches, revealed that adhesive wear of the shearing edges of the punches is a likely root cause of sheared surface quality degradation of the scrap web. These results were used to develop a scalar indicator for the tool condition, and the evolution of this indicator was evaluated for the datasets from the industrial setting. The analyses showed that the developed indicator allows the identification of problematic sequences of fineblanking process cycles based on the strength of its dispersion.

This dissertation introduces a framework for indirect tool condition monitoring in sheet-metal stamping using acoustic emission signals. Analysis of 398,047 fineblanking strokes from industrial and laboratory settings revealed characteristic signal patterns during wear progression. Using scrap web surface quality as a punch wear proxy, machine learning models were trained and analyzed via explainable AI techniques, leading to a scalar monitoring indicator validated across industrial datasets.

Wydawca:
Apprimus Verlag
Seria wydawnicza:
Innovations in Manufacturing Technology
Język:
Angielski
ISBN-13:
9783985552597
Ilość stron:
172
Waga:
0.33 kg
Wymiary:
1.0 x 14.8 x 21.0
Oprawa:
Miękka
Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia