'This impressive mathematical treatise lays out a rigorous approach for data analysis and modeling of complex physical systems based on a modern data-centric approach, where noisy measurements are used to extract models for stochastic behavior. Presse and Sgouralis are to be congratulated on the breadth and depth of their presentation.' W. E. Moerner, Stanford University
Part I. Concepts from Modeling, Inference, and Computing: 1. Probabilistic modeling and inference; 2. Dynamical systems and Markov processes; 3. Likelihoods and latent variables; 4. Bayesian inference; 5. Computational inference; Part II. Statistical Models: 6. Regression models; 7. Mixture models; 8. Hidden Markov models; 9. State-space models; 10. Continuous time models*; Part III. Appendix: Appendix A: Notation and other conventions; Appendix B: Numerical random variables; Appendix C: The Kronecker and Dirac deltas; Appendix D: Memoryless distributions; Appendix E: Foundational aspects of probabilistic modeling; Appendix F: Derivation of key relations; References; Index.