ISBN-13: 9783764358051 / Angielski / Twarda / 1997 / 213 str.
ISBN-13: 9783764358051 / Angielski / Twarda / 1997 / 213 str.
1. Historical Remarks Convex Integration theory, first introduced by M. Gromov 17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg 8]; (ii) the covering homotopy method which, following M. Gromov's thesis 16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale 36] who proved a crucial covering homotopy result in order to solve the classification problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succes sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Conse quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of Convex Integration theory is that it applies to solve closed relations in jet spaces, including certain general classes of underdetermined non-linear systems of par tial differential equations. As a case of interest, the Nash-Kuiper Cl-isometrie immersion theorem ean be reformulated and proved using Convex Integration theory (cf. Gromov 18]). No such results on closed relations in jet spaees can be proved by means of the other two methods."