ISBN-13: 9783540586227 / Angielski / Miękka / 1996 / 607 str.
ISBN-13: 9783540586227 / Angielski / Miękka / 1996 / 607 str.
Concepts in Surface Physics presents a tutorial treatment of the main concepts and phenomena of the physics of crystal surfaces. Emphasis is placed on simplified calculations - and the corresponding detailed analytical derivations - that are able to throw light on the most important physical mechanisms. More rigorous techniques, which often require a large amount of computer time, are also explained. The topics treated include thermodynamic and statistical properties of clean nd adsorbate-covered surfaces, atomic structure, vibrational properties, electronic structure, and the theory of physisorption and chemisorption. As well as including some improvements on the original book, this second edition has been supplemented with problems to encourage students to investigate the subject more thoroughly.
1. Introduction.- 2. Thermodynamical and Statistical Properties of Clean Surfaces.- 2.1 Thermodynamics of a Surface at Equilibrium.- 2.2 Equilibrium Shape of a Crystal.- 2.3 Facetting.- 2.4 The Roughening Transition.- 2.4.1 Generalities.- 2.4.2 Macroscopic Approach: The Continuum Limit.- a) One Dimensional Case: Statistics of a Step.- b) The Two Dimensional Case: Statistics of a Surface.- 2.4.3 Microscopic Approach.- a) Equilibrium Shape of a Step Edge.- b) Equilibrium Shape of a Surface: The Roughening Transition.- 2.4.4 Consequences of the Roughening Transition for the Equilibrium Shape of Crystals and for Crystal Growth.- 2.4.5 Experimental Evidences of the Roughening Transition.- 2.4.6 Special Cases of Vicinal Surfaces.- Problems.- 3. Atomic Structure of Surfaces.- 3.1 Surface Crystallography.- 3.1.1 Two-Dimensional Lattices.- 3.1.2 Semi-Infinite Crystals. Relaxation. Reconstruction.- 3.1.3 Notations for Surface Structures.- 3.1.4 Vicinal Surfaces.- 3.1.5 Reciprocal Lattice and Brillouin Zones.- 3.2 Experimental Techniques.- 3.2.1 Observation of the Real Lattice.- a) Field-ion Microscopy (FIM).- b) Scanning Tunneling Microscopy (STM).- 3.2.2 Observation of the Reciprocal Lattice.- a) Principles of Diffraction.- b) Low Energy Electron Diffraction (LEED).- c) Atom Scattering.- d) X-ray Scattering at Grazing Incidence.- 3.2.3 Indirect Methods.- a) Photoelectron Diffraction (PhD).- b) Surface Extended X-ray Absorption Fine Structure (SEXAFS).- c) Other Methods.- Problems.- 4. Vibrations at Surfaces.- 4.1 Elastic Forces in Crystals.- 4.1.1 Dynamical Matrix.- 4.1.2 Interatomic Forces.- a) Central Forces.- b) Angular Forces.- 4.2 Bulk Modes.- 4.3 Surface Modes.- 4.3.1 Semi-Infinite Linear Chain.- a) Mo ? M.- b) ?o ? ?.- 4.3.2 Semi-Infinite Crystals.- a) The Slab Method.- b) Exact Method for the Calculation of Surface Modes.- c) Relaxation and Reconstruction of Surfaces from Phonon Calculations.- d) Experimental Determination of Surface Modes.- 4.3.3 Brief Remarks on Adsorbed Layers.- 4.4 Spectral Densities of Modes.- 4.5 Vibrational Thermodynamical Functions.- 4.5.1 Surface Vibrational Entropy.- 4.5.2 Surface Internal Energy.- 4.5.3 Surface Specific Heat at Constant Volume.- 4.6 Mean Square Displacements.- 4.6.1 Theory.- 4.6.2 Experimental Techniques.- a) Diffraction Experiments.- b) PhD and SEXAFS Experiments.- c) Conclusion.- Problems.- 5. Electronic Structure of Surfaces.- 5.1 Jellium Model.- 5.1.1 The Free Electron Gas Bounded by Infinite Barriers.- a) One-dimensional Electron Gas.- b) Three-dimensional Electron Gas.- 5.1.2 The Free Electron Gas Bounded by Finite Barriers.- 5.1.3 The Jellium Model in the Local Density Functional Formalism.- a) Homogeneous Jellium.- b) General Case.- 5.2 Nearly Free Electron Model-Surface States.- 5.2.1 Nearly Free Electron Model for Bulk States.- 5.2.2 Surface States in Simple Gaps (Gaps of Type A).- 5.2.3 Surface States in Gaps of Type B.- 5.2.4 An Example: Al(001).- a) Band Structure along the $$ \bar{\Gamma }{\text{ }}\bar $$ Direction.- b) Band Structure along the $$ \bar{\Gamma }{\text{ }}\bar $$ Direction.- 5.2.5 Semiconductors.- 5.3 Tight-Binding Approximation.- 5.3.1 General Principles.- 5.3.2 Computation Techniques for Semi-Infinite Crystals.- a) The Slab Method.- b) The Continued Fraction Technique.- c) Illustrative Examples.- 5.4 Application of the Tight-Binding Approximation to Transition Metal Surfaces.- 5.4.1 Brief Survey of Bulk Electronic Structure.- a) Band Structure.- b) Cohesive Energy.- 5.4.2 Surface Densities of States and Potential.- 5.4.3 Surface Energies.- 5.4.4 Relaxation and Reconstruction from Energy Calculations.- 5.5 Application of the Tight-Binding Approximation to Semiconductor Surfaces.- 5.5.1 Brief Survey of Bulk Electronic Structure.- a) Band Structure.- b) Cohesive Energy.- 5.5.2 Determination of the Surface Tight-Binding Parameters.- 5.5.3 Qualitative Discussion of Surface States in Semiconductors.- 5.5.4 Examples.- a) The (111) Surface of Si.- b) The (001) Surface of Si.- c) Brief Remarks on Heteropolar Semiconductor Surfaces.- 5.6 Other Methods.- 5.6.1 The Propagation Matrix Method.- a) Formulation of the Method.- b) The Layer KKR Method.- c) The Method of Appelbaum and Hamann.- 5.6.2 Methods Using the Slab Geometry.- a) The Single Slab Geometry.- b) The Periodic Slab Geometry.- 5.7 Surface Plasmons in Metals.- 5.7.1 Summary of Bulk Plasmons in a Jellium.- a) Elementary Classical Theory: the Plasma Frequency.- b) Relation with the Dielectric Function: Dispersion of Plasmons.- 5.7.2 Surface Plasmons in a Jellium.- a) The Simple Case of Charge Oscillations Strictly Localized in the Surface Plane.- b) The Surface Plasmon Dispersion.- 5.7.3 Brief Remarks on the Effects of the Crystal Potential.- a) Bulk Plasmons.- b) Surface Plasmons.- 5.8 Image Potential.- 5.8.1 Response of a Semi-Infinite Jellium to a Uniform External Electric Field.- 5.8.2 Interaction of an External Point Charge with a Semi-Infinite Jellium: the Image Potential.- 5.8.3 Image Potential in a Dielectric Medium.- 5.8.4 Image Surface States.- a) Basics of Image Surface States.- b) A New Formulation of the Criterion for the Existence of Surface States.- c) Determination of the Electron Reflectivity of the Surface Barrier.- d) Determination of the Reflectivity of the Crystal in the Nearly Free Electron Approximation.- e) “An Example: Surface States in the L Gap of Cu(111).- f) Conclusion.- 5.9 Some Further Remarks on Exchange and Correlation Energies.- 5.9.1 Exchange and Correlations in a Semi-Infinite Jellium: Validity of the Local Density Functional Approximation.- 5.9.2 Correlations in the Tight-Binding Formalism: The Hubbard Hamiltonian.- a) Electronic Correlations in a s Band.- b) Electronic Correlations in Degenerate Bands.- c) Influence on the Band Structure and Conclusions.- 5.10 Experimental Techniques for Investigating the Electronic Structure.- 5.10.1 Surface Core Level Spectroscopy.- a) Microscopic Approach.- b) Thermodynamical Model.- c) An Example: Surface Core Level Binding Energy Shifts in Ta and W.- 5.10.2 Photoemission of Valence Electronic States.- a) Principle of the Determination of Dispersion Curves from Photoemission Spectra.- b) An Example of Bulk Dispersion Curves: Cu(110).- c) An Example of a Surface State Dispersion Curve: Al(100).- d) Brief Outline of the Principles of the Intensity Calculations in Photoemission.- 5.10.3 Inverse Photoemission.- 5.10.4 Spatially-Resolved Tunneling Spectroscopy.- 5.10.5 Measurement of Surface Plasmons.- 5.10.6 Measurement of the Work Function.- a) Vibrating Capacitor Method or Kelvin Method.- b) Field Emission.- c) Thermionic Emission Method.- d) Secondary Electron Method.- 5.10.7 Measurement of Surface Energies.- a) Measurements Based on the Study of the Equilibrium Shape of Crystals.- b) Thermal Creep Under Tension.- c) Surface Energy of Liquid Metals.- Problems.- 6. Adsorption Phenomena.- 6.1 Thermodynamical Approach.- 6.2 Statistical Methods.- 6.2.1 Adsorption Isotherms in the Absence of Lateral Interactions Between Adatoms.- a) Monolayer Adsorption: Langmuir Isotherms.- b) Multilayer Adsorption: Brunauer, Emmett and Teller (BET) Isotherms.- 6.2.2 The Two-Dimensional Lattice Gas.- a) Study of Isotherms: Condensation Phase Transition.- b) Order-disorder Transition in Adsorbed Layers.- 6.3 Physisorption.- 6.3.1 The Classical Electrostatic Interaction Between a Polar Particle and a Dielectric Surface.- a) Interaction between Two Dipoles.- b) Interaction between a Dipole and a Dielectric Surface.- 6.3.2 Interaction Between a Neutral Atom and a Dielectric Surface.- a) Van der Waals Interaction between Two Neutral Atoms in S-States.- b) Van der Waals Interaction between a Neutral Atom and a Dielectric Surface.- 6.4 Chemisorption.- 6.4.1 Generalities on Charge Transfer in Chemisorption.- a) Variation of the Ionization Energy.- b) Variation of the Affinity Energy.- 6.4.2 Anderson-Grimley-Newns Hamiltonian.- a) Hartree-Fock Treatment.- b) Beyond the Hartree-Fock Treatment.- 6.4.3 Chemisorption in the Local Density Functional Formalism.- a) Atomic Chemisorption on a Jellium Surface.- b) The Effective Medium Theory.- 6.4.4 Chemisorption on Transition Metals in the Tight-Binding Approximation.- a) General Characteristics of the Models.- b) Analytical Models.- c) Improved Models.- d) An Example: Adsorption of Simple Elements on BCC Transition Metal Surfaces.- 6.4.5 Vibrations of an Adsorbate.- a) Rigid Substrate Approximation: Ma ? M.- b) General Case.- c) Experiments.- 6.4.6 Conclusions.- 6.5 Interactions Between Adsorbates.- 6.5.1 Experimental Data.- 6.5.2 Theory of Adatom-Adatom Interactions.- a) Electronic Interactions.- b) Dipolar Interactions.- c) Elastic Interactions.- 6.5.3 Consequences of Adatom-Adatom Interactions and Conclusions.- 6.6 Electronic Structure of Ordered Overlayers. An Example: O on Ni(100).- Problems.- Appendices.- A. Theory of Scattering by a Spherical Potential: Brief Summary.- A.1 Solution of the Schrödinger Equation for a Particle in a Spherical Potential.- A.2 Scattering of a Free Particle by a Spherical Potential.- A.3 Friedel’s Sum Rule.- B. The Continued Fraction Technique.- B.1 Principle of the Recursion Method.- B.2 Principle of the Moment Method.- B.3 Practical Calculations.- C. Electromagnetic Waves in Matter.- C.1 Brief Summary of Maxwell Equations in Vacuum.- C.2 Maxwell Equations and Dielectric Properties in a Homogeneous and Isotropic Medium.- C.3 An Equivalent Description of the Dielectric Properties of a Homogeneous and Isotropic Medium: Longitudinal and Transverse Dielectric Functions.- D. Calculation of the Variation of the Total Energy Due to a Perturbing External Charge Distribution Within the Density Functional Formalism.- E. Useful Relations for the Study of Many Body Interactions.- E.1 Relation Between the Expectation Value of the Interaction Energy and the Total Energy for a System of Interacting Particle.- E.2 Derivation of the Fredholm Formula.- F. Interaction of an Electron With an Electromagnetic Field and Theory of Angle-Resolved Ultra-Violet Photoemission (UPS).- F.1 The Optical Matrix Element.- F.2 Expression of the Photoemitted Current in UPS.- F.2.1 Some Useful Relations.- F.2.2 Calculation of the Photoemitted Current in UPS.- F.3 Conservation of the Wave Vector in Photoemission.- G. Calculation of the Current in a Scanning Tunneling Microscope.- H. Calculation of the Atomic Dynamic Polarizability.- I. Variation of the Density of States Due to a Perturbing Potential.- J. Energy of Chemisorption in the Anderson-Grimley-Newns Model Using Contour Integrals.- K. Elastic Constants and Elastic Waves in Cubic Crystals.- K.1 Elastic Strain.- K.2 Elastic Stress.- K.3 Elastic Constants.- K.4 Propagation of Elastic Waves in Cubic Crystals.- K.5 Elastic Energy.- References.
Concepts in Aurface Physics presents a tutorial treatment of the main concepts and phenomena of the physics of crystal surfaces. Emphasis is placed on simplified calculations - and the corresponding detailed analytical derivations - that are able to throw light on the most important physical mechanisms. More rigorous techniques, which often require a large amount of computer time, are also explained. The topics treated include thermodynamic and statistical properties of clean nd adsorbate-covered surfaces, atomic structure, vibrational properties, electronic structure, and the theory of physisorption and chemisorption. As well as including some improvements on the original book, this second edition has been supplemented with problems to encourage students to investigate the subject more thoroughly.
1997-2025 DolnySlask.com Agencja Internetowa