• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach

ISBN-13: 9783319350219 / Angielski / Miękka / 2016 / 316 str.

Maciej Lawrynczuk
Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach Lawryńczuk, Maciej 9783319350219 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach

ISBN-13: 9783319350219 / Angielski / Miękka / 2016 / 316 str.

Maciej Lawrynczuk
cena 401,58
(netto: 382,46 VAT:  5%)

Najniższa cena z 30 dni: 385,52
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: - A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction.- Implementation details of the MPC algorithms for feed forward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models.- The MPC algorithms based on neural multi-models (inspired by the idea of predictive control).- The MPC algorithms with neural approximation with no on-line linearization.- The MPC algorithms with guaranteed stability and robustness.- Cooperation between the MPC algorithms and set-point optimization.Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require demanding on-line nonlinear optimization. The presented simulation results demonstrate high accuracy and computational efficiency of the algorithms. For a few representative nonlinear benchmark processes, such as chemical reactors and a distillation column, for which the classical MPC algorithms based on linear models do not work properly, the trajectories obtained in the suboptimal MPC algorithms are very similar to those given by the ideal'' MPC algorithm with on-line nonlinear optimization repeated at each sampling instant. At the same time, the suboptimal MPC algorithms are significantly less computationally demanding.

Kategorie:
Technologie
Kategorie BISAC:
Computers > Artificial Intelligence - General
Technology & Engineering > Automation
Technology & Engineering > Engineering (General)
Wydawca:
Springer
Seria wydawnicza:
Studies in Computational Intelligence
Język:
Angielski
ISBN-13:
9783319350219
Rok wydania:
2016
Wydanie:
Softcover Repri
Numer serii:
000318395
Ilość stron:
316
Waga:
5.15 kg
Wymiary:
23.5 x 15.5
Oprawa:
Miękka
Wolumenów:
01

"The book represents a good read for those wishing to study and implement Model Predictive Control (MPC) algorithms based on neural network type models. ... The presentation of the material in the book is pedagogical and includes the 'prototype' nonlinear MPC problem, which is seen as an 'ideal' for suboptimal schemes issues from the linearization-based approaches." (Sorin Olaru, Mathematical Reviews, April, 2017)

"This is a monographic work that reflects a large experience in the exploitation of neural network scenarios for Model Predictive Control (MPC). The book provides a rigorous and self-contained material for some key theoretical topics, accompanied by the description of the associated algorithms. ... The exposition is suitable for graduate studies or specialized research stages and requires a medium level of training in control systems engineering." (Octavian Pastravanu, zbMATH 1330.93002, 2016)

MPC Algorithms.-

MPC Algorithms Based on Double-Layer Perceptron

Neural Models: the Prototypes.-

MPC Algorithms Based on Neural Hammerstein and

Wiener Models.-

MPC Algorithms Based on Neural State-Space Models.-

MPC Algorithms Based on Neural Multi-Models.-

MPC Algorithms with Neural Approximation.-

Stability and Robustness of MPC Algorithms.-

Cooperation Between MPC Algorithms and Set-Point

Optimisation Algorithms.

This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include:

·         A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction.

·         Implementation details of the MPC algorithms for feedforward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models.

·         The MPC algorithms based on neural multi-models (inspired by the idea of predictive control).

·         The MPC algorithms with neural approximation with no on-line linearization.

·         The MPC algorithms with guaranteed stability and robustness.

·         Cooperation between the MPC algorithms and set-point optimization.

Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require demanding on-line nonlinear optimization. The presented simulation results demonstrate high accuracy and computational efficiency of the algorithms. For a few representative nonlinear benchmark processes, such as chemical reactors and a distillation column, for which the classical MPC algorithms based on linear models do not work properly, the trajectories obtained in the suboptimal MPC algorithms are very similar to those given by the ``ideal'' MPC algorithm with on-line nonlinear optimization repeated at each sampling instant. At the same time, the suboptimal MPC algorithms are significantly less computationally demanding.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia