• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Computational Biomechanics: Theoretical Background and Biological/Biomedical Problems » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950560]
• Literatura piękna
 [1849509]

  więcej...
• Turystyka
 [71097]
• Informatyka
 [151150]
• Komiksy
 [35848]
• Encyklopedie
 [23178]
• Dziecięca
 [617388]
• Hobby
 [139064]
• AudioBooki
 [1657]
• Literatura faktu
 [228597]
• Muzyka CD
 [383]
• Słowniki
 [2855]
• Inne
 [445295]
• Kalendarze
 [1464]
• Podręczniki
 [167547]
• Poradniki
 [480102]
• Religia
 [510749]
• Czasopisma
 [516]
• Sport
 [61293]
• Sztuka
 [243352]
• CD, DVD, Video
 [3414]
• Technologie
 [219456]
• Zdrowie
 [101002]
• Książkowe Klimaty
 [124]
• Zabawki
 [2311]
• Puzzle, gry
 [3459]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8079]
Kategorie szczegółowe BISAC

Computational Biomechanics: Theoretical Background and Biological/Biomedical Problems

ISBN-13: 9784431540724 / Angielski / Miękka / 2012 / 196 str.

Tanaka
Computational Biomechanics: Theoretical Background and Biological/Biomedical Problems Tanaka, Masao 9784431540724 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Computational Biomechanics: Theoretical Background and Biological/Biomedical Problems

ISBN-13: 9784431540724 / Angielski / Miękka / 2012 / 196 str.

Tanaka
cena 200,77
(netto: 191,21 VAT:  5%)

Najniższa cena z 30 dni: 192,74
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

The predictive medicine will have the capability to predict the results of certain medical treatment based upon the understanding of dynamic mechanisms and quantitative logic of human physiology and pathology. Predictive medicine will have significant impacts on the promotion of health and welfare. In addition, "in silico" development and testing of new medical treatments and medical equipments will have direct impacts on the improvement of product reliability and safety while improving the efficiency and reducing the cost.

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Engineering (General)
Science > Chemistry - Clinical
Science > Biologia molekularna
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9784431540724
Rok wydania:
2012
Wydanie:
2012
Numer serii:
000444184
Ilość stron:
196
Waga:
0.29 kg
Wymiary:
22.86 x 15.24 x 1.52
Oprawa:
Miękka
Wolumenów:
01

Chapter 1: Introduction

1.1  Biomechanics: Mechanics in/for biology and medicine

1.2  One-dimensional mechanics of biosolids and biofluids

1.2.1 A dip into biosolid mechanics

1.2.2 A dip into biofluid mechanics

1.3  Addendum to one-dimensional mechanics

1.3.1 Law of mixture

1.3.2 Discrete model of continuum

1.4  Biomechanics in biology and medicine: a tiny showcase

References

Chapter 2: Mechanics of biosolids and computational analysis

2.1 Fundamentals of solid mechanics

2.1.1 Stress and force: Equilibrium equations

2.1.2.Strain and displacement: Kinematic equations

2.1.3 Constitutive equiations: Linear elasticity

2.1.4 Constitutive equations: Nonlinear elasticity

2.2 Mechanical properties of bone

    2.1.2 Cortical bone

    2.2.2 Cancellous bone

2.3 Mechanical properties of soft tissue

    2.3.1 Arteial wall

    2.3.2 Skin

    2.3.3 Cornea

2.4 Principles of stationary potential energy and virtual work

    2.4.1 Boundary value problems for equilibrium

    2.4.2 Principle of virtual work

    2.4.3 Principle of stationary potential energy

2.5 Finite element method

    2.5.1 Finite element discretization and approximation

    2.5.2 Finite element equations for small strain linear elasticity

    2.5.3 Finite element equations for finite strain hyperelasticity

    2.5.4 Shape functions: Simplex, complex and multiplex elements

    2.5.5 Shape functions: Isoparametric elements

2.6 Computational biomechanics problems

    2.6.1 Lattice continuum modeling for cancellous bone structure

    2.6.2 Scoliotic deformation analysis of spinal column

    2.6.3 Stress analysis of temporomandibular joint disc

    2.6.4 Deformation analysis of cornea: inverse problems

    2.6.5 Stress analysis of proximal femur: Image-based analysis and simulation

2.7 Summary

References

Chapter 3 Mechanics of biofluid and computational analysis

3.1 Fundamentals of fluid mechanics

   3.1.1 Viscous and inviscid fluid

   3.1.2 Newtonian and non-Newtonian fluid

   3.1.3 Compressible and incompressible fluids

3.2 Dimensionless numbers

   3.2.1 Reynolds number

   3.2.2 Womersley number

3.3 Eulerian and Lagrangian representations of fluid flow

3.4 Governing equation of fluid flow

   3.4.1 Equation of continuity

   3.4.2 Navier-Stokes equation

3.5 Euler-based Computational Fluid Dynamics

   3.5.1 Discretization

   3.5.2 Finite Volume Method

3.6 Lagrange-based Computational Fluid Dynamics

   3.6.1 Governing equations

   3.6.2 Modeling of the interaction between particles

   3.6.3 Algorithm of the MPS method

3.7 Applications of Flow simulations to Biomechanical Problems

   3.7.1 Analysis of Blood Flow in the Aorta

   3.7.2 Analysis of Blood Flow in the Left Ventricle for

the Interpretation of Color M-mode Doppler Echocardiogram

   3.7.3 Fluid-Structure Interaction Analysis of Blood Flow

for Differentiation of Vascular Diseases by Pulse

Wave Propagation WAVE PROPAGATION

   3.7.4 PrimaryThrombus Formation by Platelet Aggregation by the Particle Method

   3.7.5 Fluid-Structure Interaction Analysis on the Behavior of

Spherical Embolic Agents in a Vascular Bifurcation

toward Pre-operation Planning of Transcatheter Embolization

3.8 Summary

References

Chapter 4:  Spring Network Modeling based on the Energy Concept

4.1 Fundamentals of spring network model

4.1.1 Single spring model

4.1.2 Network spring model

4.1.3 Bending spring model

4.1.4 Extended spring model

4.1.5 Extension to continuum model

4.2 Formulation and solving method

4.2.1 Minimum energy problem

4.2.2 Solving method

4.3 Parameter identification of the spring network model

4.3.1 Stretching spring constant

4.3.2 Bending spring constant

4.4 Mechanical behavior of a single red blood cell

4.4.1 Minimum energy problem to determine the shape of RBC

4.4.2 RBC behavior in a shear flow

4.5 Mechanical properties of a eukaryotic cell

4.5.1 Mechanocell model

4.5.2 Application of mechanocell model to micro biomechanics

4.6 Aneurysm development

4.6.1 Modeling of aneurysm

4.6.2 Rule-based simulation of aneurysm development

4.7 Multiscale blood flow

4.7.1 Modeling of multiple red blood cell flow

4.7.2 Multiscale simulation of blood flow

4.8 Summary

References

Chapter 5 Toward in silico medicine

5.1 Computational biomechanics in medical engineering

5.2 Model-based diagnosis

5.3 Multiscale modeling and analysis

5.4 Subject-/patient-specific modeling and simulation

5.5 Towards predictive medicine

Chapter 2: Mechanics of biosolids and computational analysis

2.1 Fundamentals of solid mechanics

2.1.1 Stress and force: Equilibrium equations

2.1.2.Strain and displacement: Kinematic equations

2.1.3 Constitutive equiations: Linear elasticity

2.1.4 Constitutive equations: Nonlinear elasticity

2.2 Mechanical properties of bone

    2.1.2 Cortical bone

    2.2.2 Cancellous bone

2.3 Mechanical properties of soft tissue

    2.3.1 Arteial wall

    2.3.2 Skin

    2.3.3 Cornea

2.4 Principles of stationary potential energy and virtual work

    2.4.1 Boundary value problems for equilibrium

    2.4.2 Principle of virtual work

    2.4.3 Principle of stationary potential energy

2.5 Finite element method

    2.5.1 Finite element discretization and approximation

    2.5.2 Finite element equations for small strain linear elasticity

    2.5.3 Finite element equations for finite strain hyperelasticity

    2.5.4 Shape functions: Simplex, complex and multiplex elements

    2.5.5 Shape functions: Isoparametric elements

2.6 Computational biomechanics problems

    2.6.1 Lattice continuum modeling for cancellous bone structure

    2.6.2 Scoliotic deformation analysis of spinal column

    2.6.3 Stress analysis of temporomandibular joint disc

    2.6.4 Deformation analysis of cornea: inverse problems

    2.6.5 Stress analysis of proximal femur: Image-based analysis and simulation

2.7 Summary

References

Chapter 3 Mechanics of biofluid and computational analysis

3.1 Fundamentals of fluid mechanics

   3.1.1 Viscous and inviscid fluid

   3.1.2 Newtonian and non-Newtonian fluid

   3.1.3 Compressible and incompressible fluids

3.2 Dimensionless numbers

   3.2.1 Reynolds number

   3.2.2 Womersley number

3.3 Eulerian and Lagrangian representations of fluid flow

3.4 Governing equation of fluid flow

   3.4.1 Equation of continuity

   3.4.2 Navier-Stokes equation

3.5 Euler-based Computational Fluid Dynamics

   3.5.1 Discretization

   3.5.2 Finite Volume Method

3.6 Lagrange-based Computational Fluid Dynamics

   3.6.1 Governing equations

   3.6.2 Modeling of the interaction between particles

   3.6.3 Algorithm of the MPS method

3.7 Applications of Flow simulations to Biomechanical Problems

   3.7.1 Analysis of Blood Flow in the Aorta

   3.7.2 Analysis of Blood Flow in the Left Ventricle for

the Interpretation of Color M-mode Doppler Echocardiogram

   3.7.3 Fluid-Structure Interaction Analysis of Blood Flow

for Differentiation of Vascular Diseases by Pulse

Wave Propagation WAVE PROPAGATION

   3.7.4 PrimaryThrombus Formation by Platelet Aggregation by the Particle Method

   3.7.5 Fluid-Structure Interaction Analysis on the Behavior of

Spherical Embolic Agents in a Vascular Bifurcation

toward Pre-operation Planning of Transcatheter Embolization

3.8 Summary

References

Chapter 4:  Spring Network Modeling based on the Energy Concept

4.1 Fundamentals of spring network model

4.1.1 Single spring model

4.1.2 Network spring model

4.1.3 Bending spring model

4.1.4 Extended spring model

4.1.5 Extension to continuum model

4.2 Formulation and solving method

4.2.1 Minimum energy problem

4.2.2 Solving method

4.3 Parameter identification of the spring network model

4.3.1 Stretching spring constant

4.3.2 Bending spring constant

4.4 Mechanical behavior of a single red blood cell

4.4.1 Minimum energy problem to determine the shape of RBC

4.4.2 RBC behavior in a shear flow

4.5 Mechanical properties of a eukaryotic cell

4.5.1 Mechanocell model

4.5.2 Application of mechanocell model to micro biomechanics

4.6 Aneurysm development

4.6.1 Modeling of aneurysm

4.6.2 Rule-based simulation of aneurysm development

4.7 Multiscale blood flow

4.7.1 Modeling of multiple red blood cell flow

4.7.2 Multiscale simulation of blood flow

4.8 Summary

References

Chapter 5 Toward in silico medicine

5.1 Computational biomechanics in medical engineering

5.2 Model-based diagnosis

5.3 Multiscale modeling and analysis

5.4 Subject-/patient-specific modeling and simulation

5.5 Towards predictive medicine

Chapter 3 Mechanics of biofluid and computational analysis

3.1 Fundamentals of fluid mechanics

   3.1.1 Viscous and inviscid fluid

   3.1.2 Newtonian and non-Newtonian fluid

   3.1.3 Compressible and incompressible fluids

3.2 Dimensionless numbers

   3.2.1 Reynolds number

   3.2.2 Womersley number

3.3 Eulerian and Lagrangian representations of fluid flow

3.4 Governing equation of fluid flow

   3.4.1 Equation of continuity

   3.4.2 Navier-Stokes equation

3.5 Euler-based Computational Fluid Dynamics

   3.5.1 Discretization

   3.5.2 Finite Volume Method

3.6 Lagrange-based Computational Fluid Dynamics

   3.6.1 Governing equations

   3.6.2 Modeling of the interaction between particles

   3.6.3 Algorithm of the MPS method

3.7 Applications of Flow simulations to Biomechanical Problems

   3.7.1 Analysis of Blood Flow in the Aorta

   3.7.2 Analysis of Blood Flow in the Left Ventricle for

the Interpretation of Color M-mode Doppler Echocardiogram

   3.7.3 Fluid-Structure Interaction Analysis of Blood Flow

for Differentiation of Vascular Diseases by Pulse

Wave Propagation WAVE PROPAGATION

   3.7.4 PrimaryThrombus Formation by Platelet Aggregation by the Particle Method

   3.7.5 Fluid-Structure Interaction Analysis on the Behavior of

Spherical Embolic Agents in a Vascular Bifurcation

toward Pre-operation Planning of Transcatheter Embolization

3.8 Summary

References

Chapter 4:  Spring Network Modeling based on the Energy Concept

4.1 Fundamentals of spring network model

4.1.1 Single spring model

4.1.2 Network spring model

4.1.3 Bending spring model

4.1.4 Extended spring model

4.1.5 Extension to continuum model

4.2 Formulation and solving method

4.2.1 Minimum energy problem

4.2.2 Solving method

4.3 Parameter identification of the spring network model

4.3.1 Stretching spring constant

4.3.2 Bending spring constant

4.4 Mechanical behavior of a single red blood cell

4.4.1 Minimum energy problem to determine the shape of RBC

4.4.2 RBC behavior in a shear flow

4.5 Mechanical properties of a eukaryotic cell

4.5.1 Mechanocell model

4.5.2 Application of mechanocell model to micro biomechanics

4.6 Aneurysm development

4.6.1 Modeling of aneurysm

4.6.2 Rule-based simulation of aneurysm development

4.7 Multiscale blood flow

4.7.1 Modeling of multiple red blood cell flow

4.7.2 Multiscale simulation of blood flow

4.8 Summary

References

Chapter 5 Toward in silico medicine

5.1 Computational biomechanics in medical engineering

5.2 Model-based diagnosis

5.3 Multiscale modeling and analysis

5.4 Subject-/patient-specific modeling and simulation

5.5 Towards predictive medicine

Chapter 4:  Spring Network Modeling based on the Energy Concept

4.1 Fundamentals of spring network model

4.1.1 Single spring model

4.1.2 Network spring model

4.1.3 Bending spring model

4.1.4 Extended spring model

4.1.5 Extension to continuum model

4.2 Formulation and solving method

4.2.1 Minimum energy problem

4.2.2 Solving method

4.3 Parameter identification of the spring network model

4.3.1 Stretching spring constant

4.3.2 Bending spring constant

4.4 Mechanical behavior of a single red blood cell

4.4.1 Minimum energy problem to determine the shape of RBC

4.4.2 RBC behavior in a shear flow

4.5 Mechanical properties of a eukaryotic cell

4.5.1 Mechanocell model

4.5.2 Application of mechanocell model to micro biomechanics

4.6 Aneurysm development

4.6.1 Modeling of aneurysm

4.6.2 Rule-based simulation of aneurysm development

4.7 Multiscale blood flow

4.7.1 Modeling of multiple red blood cell flow

4.7.2 Multiscale simulation of blood flow

4.8 Summary

References

Chapter 5 Toward in silico medicine

5.1 Computational biomechanics in medical engineering

5.2 Model-based diagnosis

5.3 Multiscale modeling and analysis

5.4 Subject-/patient-specific modeling and simulation

5.5 Towards predictive medicine

Chapter 5 Toward in silico medicine

5.1 Computational biomechanics in medical engineering

5.2 Model-based diagnosis

5.3 Multiscale modeling and analysis

5.4 Subject-/patient-specific modeling and simulation

5.5 Towards predictive medicine



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia