• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2952079]
• Literatura piękna
 [1850969]

  więcej...
• Turystyka
 [71058]
• Informatyka
 [151066]
• Komiksy
 [35579]
• Encyklopedie
 [23181]
• Dziecięca
 [620496]
• Hobby
 [139036]
• AudioBooki
 [1646]
• Literatura faktu
 [228729]
• Muzyka CD
 [379]
• Słowniki
 [2932]
• Inne
 [445708]
• Kalendarze
 [1409]
• Podręczniki
 [164793]
• Poradniki
 [480107]
• Religia
 [510956]
• Czasopisma
 [511]
• Sport
 [61267]
• Sztuka
 [243299]
• CD, DVD, Video
 [3411]
• Technologie
 [219640]
• Zdrowie
 [100984]
• Książkowe Klimaty
 [124]
• Zabawki
 [2281]
• Puzzle, gry
 [3363]
• Literatura w języku ukraińskim
 [258]
• Art. papiernicze i szkolne
 [8020]
Kategorie szczegółowe BISAC

Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology

ISBN-13: 9781071626160 / Angielski / Twarda / 2022

Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology  9781071626160 Springer US - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology

ISBN-13: 9781071626160 / Angielski / Twarda / 2022

cena 605,23
(netto: 576,41 VAT:  5%)

Najniższa cena z 30 dni: 578,30
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!
inne wydania

This volume provides protocols for computational, statistical, and machine learning methods that are mainly applied to the study of metabolic engineering, synthetic biology, and disease applications. These techniques support the latest progress in cross-disciplinary research that integrates the different scales of biological complexity. The topics covered in this book are geared toward researchers with a background in engineering, computational analytical, and modeling experience and cover a broad range of topics in computational and machine learning approaches. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.

Comprehensive and practical, Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology is a valuable resource for any researcher or scientist who wants to learn more about the latest computational methods and how they are applied toward the understanding and prediction of complex biology. 

Kategorie:
Nauka, Biologia i przyroda
Kategorie BISAC:
Science > Life Sciences - Anatomy & Physiology
Science > Biologia i przyroda
Science > Research & Methodology
Wydawca:
Springer US
Seria wydawnicza:
Methods in Molecular Biology
Język:
Angielski
ISBN-13:
9781071626160
Rok wydania:
2022
Waga:
1.07 kg
Wymiary:
25.4 x 17.8
Oprawa:
Twarda
Dodatkowe informacje:
Wydanie ilustrowane

Preface…
Table of Contents…
Contributing Authors…

1. Challenges to Ensure a Better Translation of Metabolic Engineering for Industrial Applications
Fayza Daboussi and Nic D. Lindley

2. Synthetic Biology Meets Machine Learning
Brendan Fu-Long Sieow, Ryan De Sotto, Zhi Ren Darren Seet, In Young Hwang, and Matthew Wook Chang

3. Design and Analysis of Massively Parallel Reporter Assays using FORECAST
Pierre-Aurelien Gilliot and Thomas E. Gorochowski

4. Modelling Protein Complexes and Molecular Assemblies using Computational Method
Romain Launay, Elin Teppa, Jérémy Esque, and Isabelle André

5. From Genome Mining to Protein Engineering: A Structural Bioinformatics Route
Derek J. Smith

6. Creating De Novo Overlapped Genes
Dominic Y. Logel and Paul R. Jaschke 

7. Design of Gene Boolean Gates and Circuits with Convergent Promoters
Biruck Woldai Abraha and Mario Andrea Marchisio

8. Computational Methods for the Design of Recombinase Logic Circuits with Adaptable Circuit Specifications
Ana Zúñiga, Jérôme Bonnet, and Sarah Guiziou

9. Designing a Model-Driven Approach Towards Rational Experimental Design in Bioprocess Optimization
Jing Wui Yeoh and Chueh Loo Poh

10. Modeling Subcellular Protein Recruitment Dynamics for Synthetic Biology
Kwabena A. Badu-Nkansah, Diana Sernas, Dean E. Natwick, and Sean R. Collins

11. Genome-Scale Modeling and Systems Metabolic Engineering of Vibrio Natriegens for the Production of 1,3-Propanediol
Ye Zhang, Dehua Liu, and Zhen Chen

12. Application of GeneCloudOmics: Transcriptomics Data Analytics for Synthetic Biology
Mohamed Helmy and Kumar Selvarajoo

13. Overview of Bioinformatics Software and Databases for Metabolic Engineering
Deena M.A. Gendoo

14. Computational Simulation of Tumor-Induced Angiogenesis
Masahiro Sugimoto

15. Computational Methods and Deep Learning for Elucidating Protein Interaction Networks
Dhvani Sandip Vora, Yogesh Kalakoti, and Durai Sundar

16. Machine Learning Methods for Survival Analysis with Clinical and Transcriptomics Data of Breast Cancer
Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

17. Machine Learning Using Neural Networks for Metabolomic Pathway Analyses
Rosalin Bonetta Valentino, Jean-Paul Ebejer, and Ingc Gianluca Valentino

18. Machine Learning and Hybrid Methods for Metabolic Pathway Modeling
Miroslava Cuperlovic-Culf, Thao Nguyen-Tran, and Steffany A.L. Bennett

19. A Machine Learning Based Approach Using Multi Omics Data to Predict Metabolic Pathways
Vidya Niranjan, Akshay Uttarkar, Aakaanksha Kaul, and Maryanne Varghese

Subject Index List…


This volume provides protocols for computational, statistical, and machine learning methods that are mainly applied to the study of metabolic engineering, synthetic biology, and disease applications. These techniques support the latest progress in cross-disciplinary research that integrates the different scales of biological complexity. The topics covered in this book are geared toward researchers with a background in engineering, computational analytical, and modeling experience and cover a broad range of topics in computational and machine learning approaches. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.

Comprehensive and practical, Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology is a valuable resource for any researcher or scientist who wants to learn more about the latest computational methods and how they are applied toward the understanding and prediction of complex biology. 



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia