I. Structures on Riemannian manifolds.- §1. Riemannian manifolds.- §2. Kaehlerian manifolds.- §3. Sasakian manifolds.- §4. f-structure.- II. Submanifolds.- §1. Induced connection and second fundamental form.- §2. Equations of Gauss, Codazzi and Ricci.- §3. Normal connection.- §4. Laplacian of the second fundamental form.- §5. Submanifolds of space forms.- §6. Parallel second fundamental form.- III. Contact CR submanifolds.- §1. Submanifolds of Sasakian manifolds.- §2. f-structure on submanifolds.- §3. Integrability of distributions.- §4. Totally contact umbilical submanifolds.- §5. Examples of contact CR submanifolds.- §6. Flat normal connection.- §7. Minimal contact CR submanifolds.- IV. CR submanifolds.- §1. Submanifolds of Kaehlerian manifolds.- §2. CR submanifolds of Hermitian manifolds.- §3. Characterization of CR submanifolds.- §4. Distributions.- §5. Parallel f-structure.- §6. Totally umbilical submanifolds.- §7. Examples of CR submanifolds.- §8. Semi-flat normal connection.- §9. Normal connection of invariant submanifolds.- §10. Parallel mean curvature vector.- §11. Integral formulas.- §12. CR submanifolds of Cm.- V. Submanifolds and Riemannian fibre bundles.- §1. Curvature tensors.- §2. Mean curvature vector.- §3. Lengths of the second fundamental forms.- VI. Hypersurfaces.- §1. Real hypersurfaces of complex space forms.- §2. Pseudo-Einstein real hypersurfaces.- §3. Generic minimal submanifolds.- §4. Semidefinite second fundamental form.- §5. Hypersurfaces of S2n+1.- §6. (f,g,u,v,?)-structure.- Author index.