• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Brownian Motion Calculus » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2952079]
• Literatura piękna
 [1850969]

  więcej...
• Turystyka
 [71058]
• Informatyka
 [151066]
• Komiksy
 [35579]
• Encyklopedie
 [23181]
• Dziecięca
 [620496]
• Hobby
 [139036]
• AudioBooki
 [1646]
• Literatura faktu
 [228729]
• Muzyka CD
 [379]
• Słowniki
 [2932]
• Inne
 [445708]
• Kalendarze
 [1409]
• Podręczniki
 [164793]
• Poradniki
 [480107]
• Religia
 [510956]
• Czasopisma
 [511]
• Sport
 [61267]
• Sztuka
 [243299]
• CD, DVD, Video
 [3411]
• Technologie
 [219640]
• Zdrowie
 [100984]
• Książkowe Klimaty
 [124]
• Zabawki
 [2281]
• Puzzle, gry
 [3363]
• Literatura w języku ukraińskim
 [258]
• Art. papiernicze i szkolne
 [8020]
Kategorie szczegółowe BISAC

Brownian Motion Calculus

ISBN-13: 9780470021705 / Angielski / Miękka / 2005 / 328 str.

UK) Wiersema Ubbo F. (University of Reading
Brownian Motion Calculus Ubbo F. (University of Reading, UK) Wiersema 9780470021705 John Wiley & Sons Inc - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Brownian Motion Calculus

ISBN-13: 9780470021705 / Angielski / Miękka / 2005 / 328 str.

UK) Wiersema Ubbo F. (University of Reading
cena 188,95
(netto: 179,95 VAT:  5%)

Najniższa cena z 30 dni: 187,78
Termin realizacji zamówienia:
ok. 30 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

Brownian Motion Calculus presents the basics of Stochastic Calculus with a focus on the valuation of financial derivatives. It is intended as an accessible introduction to the technical literature. A clear distinction has been made between the mathematics that is convenient for a first introduction, and the more rigorous underpinnings which are best studied from the selected technical references. The inclusion of fully worked out exercises makes the book attractive for self study. Standard probability theory and ordinary calculus are the prerequisites. Summary slides for revision and teaching can be found on the book website.

Kategorie:
Nauka, Ekonomia i biznes
Kategorie BISAC:
Business & Economics > Finance - General
Business & Economics > Matematyka biznesowa
Mathematics > Rachunek różniczkowy
Wydawca:
John Wiley & Sons Inc
Język:
Angielski
ISBN-13:
9780470021705
Rok wydania:
2005
Ilość stron:
328
Waga:
0.50 kg
Wymiary:
22.61 x 14.99 x 2.03
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Podręcznik

Preface.

1 Brownian Motion.

1.1 Origins.

1.2 Brownian Motion Specification.

1.3 Use of Brownian Motion in Stock Price Dynamics.

1.4 Construction of Brownian Motion from a Symmetric Random Walk.

1.5 Covariance of Brownian Motion.

1.6 Correlated Brownian Motions.

1.7 Successive Brownian Motion Increments.

1.8 Features of a Brownian Motion Path.

1.9 Exercises.

1.10 Summary.

2 Martingales.

2.1 Simple Example.

2.2 Filtration.

2.3 Conditional Expectation.

2.4 Martingale Description.

2.5 Martingale Analysis Steps.

2.6 Examples of Martingale Analysis.

2.7 Process of Independent Increments.

2.8 Exercises.

2.9 Summary.

3 It Stochastic Integral.

3.1 How a Stochastic Integral Arises.

3.2 Stochastic Integral for Non–Random Step–Functions.

3.3 Stochastic Integral for Non–Anticipating Random Step–Functions.

3.4 Extension to Non–Anticipating General Random Integrands.

3.5 Properties of an It Stochastic Integral.

3.6 Significance of Integrand Position.

3.7 It integral of Non–Random Integrand.

3.8 Area under a Brownian Motion Path.

3.9 Exercises.

3.10 Summary.

3.11 A Tribute to Kiyosi It .

Acknowledgment.

4 It Calculus.

4.1 Stochastic Differential Notation.

4.2 Taylor Expansion in Ordinary Calculus.

4.3 It s Formula as a Set of Rules.

4.4 Illustrations of It s Formula.

4.5 Lévy Characterization of Brownian Motion.

4.6 Combinations of Brownian Motions.

4.7 Multiple Correlated Brownian Motions.

4.8 Area under a Brownian Motion Path Revisited.

4.9 Justification of It s Formula.

4.10 Exercises.

4.11 Summary.

5 Stochastic Differential Equations.

5.1 Structure of a Stochastic Differential Equation.

5.2 Arithmetic Brownian Motion SDE.

5.3 Geometric Brownian Motion SDE.

5.4 Ornstein Uhlenbeck SDE.

5.5 Mean–Reversion SDE.

5.6 Mean–Reversion with Square–Root Diffusion SDE.

5.7 Expected Value of Square–Root Diffusion Process.

5.8 Coupled SDEs.

5.9 Checking the Solution of a SDE.

5.10 General Solution Methods for Linear SDEs.

5.11 Martingale Representation.

5.12 Exercises.

5.13 Summary.

6 Option Valuation.

6.1 Partial Differential Equation Method.

6.2 Martingale Method in One–Period Binomial Framework.

6.3 Martingale Method in Continuous–Time Framework.

6.4 Overview of Risk–Neutral Method.

6.5 Martingale Method Valuation of Some European Options.

6.6 Links between Methods.

6.6.1 Feynman–Ka Link between PDE Method and Martingale Method.

6.6.2 Multi–Period Binomial Link to Continuous.

6.7 Exercise.

6.8 Summary.

7 Change of Probability.

7.1 Change of Discrete Probability Mass.

7.2 Change of Normal Density.

7.3 Change of Brownian Motion.

7.4 Girsanov Transformation.

7.5 Use in Stock Price Dynamics Revisited.

7.6 General Drift Change.

7.7 Use in Importance Sampling.

7.8 Use in Deriving Conditional Expectations.

7.9 Concept of Change of Probability.

7.10 Exercises.

7.11 Summary.

8 Numeraire.

8.1 Change of Numeraire.

8.2 Forward Price Dynamics.

8.3 Option Valuation under most Suitable Numeraire.

8.4 Relating Change of Numeraire to Change of Probability.

8.5 Change of Numeraire for Geometric Brownian Motion.

8.6 Change of Numeraire in LIBOR Market Model.

8.7 Application in Credit Risk Modelling.

8.8 Exercises.

8.9 Summary.

ANNEXES.

A Annex A: Computations with Brownian Motion.

A.1 Moment Generating Function and Moments of Brownian Motion.

A.2 Probability of Brownian Motion Position.

A.3 Brownian Motion Reflected at the Origin.

A.4 First Passage of a Barrier.

A.5 Alternative Brownian Motion Specification.

B Annex B: Ordinary Integration.

B.1 Riemann Integral.

B.2 Riemann Stieltjes Integral.

B.3 Other Useful Properties.

B.4 References.

C Annex C: Brownian Motion Variability.

C.1 Quadratic Variation.

C.2 First Variation.

D Annex D: Norms.

D.1 Distance between Points.

D.2 Norm of a Function.

D.3 Norm of a Random Variable.

D.4 Norm of a Random Process.

D.5 Reference.

E Annex E: Convergence Concepts.

E.1 Central Limit Theorem.

E.2 Mean–Square Convergence.

E.3 Almost Sure Convergence.

E.4 Convergence in Probability.

E.5 Summary.

Answers to Exercises.

References.

Index.

UBBO WIERSEMA was educated in Applied Mathematics at Delft, in Operations Research at Berkeley, and in Financial Economics and Financial Mathematics at the London School of Economics. He joined The Business School for Financial Markets (the ICMA Centre) at the University of Reading, UK, in 1997, to develop and teach its curriculum in Quantitative Finance. Prior to that, he was a derivatives mathematician at the merchant bank Robert Fleming in the City of London. Before that his career was focused in Operations Research in the US and Europe.

Brownian Motion Calculus

Ubbo Wiersema

Brownian Motion Calculus presents the basics of Stochastic Calculus with a focus on the valuation of financial derivatives. It is intended as an accessible introduction to the technical literature. The sequence of chapters starts with a description of Brownian motion, the random process which serves as the basic driver of the irregular behaviour of financial quantities. That exposition is based on the easily understood discrete random walk. Thereafter the gains from trading in a random environment are formulated in a discrete–time setting. The continuous–time equivalent requires a new concept, the It stochastic integral. Its construction is explained step by step, using the so–called norm of a random process (its magnitude), of which a motivated exposition is given in an Annex. The next topic is It s formula for evaluating stochastic integrals; it is the random process counter part of the well known Taylor formula for functions in ordinary calculus. Many examples are given. These ingredients are then used to formulate some well established models for the evolution of stock prices and interest rates, so–called stochastic differential equations, together with their solution methods. Once all that is in place, two methodologies for option valuation are presented. One uses the concept of a change of probability and the Girsanov transformation, which is at the core of financial mathematics. As this technique is often perceived as a magic trick, particular care has been taken to make the explanation elementary and to show numerous applications. The final chapter discusses how computations can be made more convenient by a suitable choice of the so–called numeraire. A clear distinction has been made between the mathematics that is convenient for a first introduction, and the more rigorous underpinnings which are best studied from the selected technical references. The inclusion of fully worked out exercises makes the book attractive for self study. Standard probability theory and ordinary calculus are the prerequisites. Summary slides for revision and teaching can be found on the book website www.wiley.com/go/brownianmotioncalculus.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia