• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Bringing Machine Learning to Software-Defined Networks » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Bringing Machine Learning to Software-Defined Networks

ISBN-13: 9789811948732 / Angielski / Miękka / 2022

Zehua Guo
Bringing Machine Learning to Software-Defined Networks Zehua Guo 9789811948732 Springer Nature Singapore - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Bringing Machine Learning to Software-Defined Networks

ISBN-13: 9789811948732 / Angielski / Miękka / 2022

Zehua Guo
cena 201,72 zł
(netto: 192,11 VAT:  5%)

Najniższa cena z 30 dni: 192,74 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Emerging machine learning techniques bring new opportunities to flexible network control and management. This book focuses on using state-of-the-art machine learning-based approaches to improve the performance of Software-Defined Networking (SDN). It will apply several innovative machine learning methods (e.g., Deep Reinforcement Learning, Multi-Agent Reinforcement Learning, and Graph Neural Network) to traffic engineering and controller load balancing in software-defined wide area networks, as well as flow scheduling, coflow scheduling, and flow migration for network function virtualization in software-defined data center networks. It helps readers reflect on several practical problems of deploying SDN and learn how to solve the problems by taking advantage of existing machine learning techniques. The book elaborates on the formulation of each problem, explains design details for each scheme, and provides solutions by running mathematical optimization processes, conducting simulated experiments, and analyzing the experimental results.

Kategorie:
Informatyka, Internet
Kategorie BISAC:
Computers > Networking - Hardware
Computers > Artificial Intelligence - General
Computers > Hardware - Cell Phones & Devices
Wydawca:
Springer Nature Singapore
Seria wydawnicza:
SpringerBriefs in Computer Science
Język:
Angielski
ISBN-13:
9789811948732
Rok wydania:
2022
Waga:
0.15 kg
Wymiary:
23.5 x 15.5
Oprawa:
Miękka
Dodatkowe informacje:
Wydanie ilustrowane

1        Machine Learning for Software-Defined Networking

1.1   Introduction of Software-Defined Networking

1.1.1         Software-Defined Wide Area Network

1.1.2         Software-Defined Data Center Networks

1.2   Introduction of Machine Learning Techniques

1.2.1         Deep Reinforcement Learning

1.2.2         Multi-Agent Reinforcement Learning

1.2.3         Graph Neural Network

 

2        Deep Reinforcement Learning-based Traffic Engineering in SD-WANs

2.1   Introduction of Traffic Engineering

2.2   Motivation

2.2.1         Problems of Existing Solutions

2.2.2         Opportunity

2.3   Overview of ScaleDRL

2.4   Design Details of ScaleDRL

2.4.1         Pinning Control in the Offline Phase

2.4.1.1     Pinning Control

2.4.1.2     Link Selection Algorithm

2.4.2         DRL Implementation of the Online Phase

2.4.2.1     DRL Framework

2.4.2.2     Customization of Neural Networks and Interfaces

2.5   Performance Evaluation

2.5.1         Simulation Setup

2.5.2         Comparison Scheme

2.5.3         Simulation Results

2.6   Conclusion

 

3        Multi-Agent Reinforcement Learning-based Controller Load Balancing in SD-WANs

3.1   Introduction of Controller Load Balancing

3.2   Motivation

3.2.1         Problems of Existing Solutions

3.2.2         Opportunity

3.3   Controller Load Balancing Problem Formulation

2.3.1 Control Plane Resource Utilization Modeling

2.3.2 Control Plane Load Balancing Problem Formulation

2.3.3 Problem Complexity Analysis

3.4   Overview of MARVEL

3.5   Design Details of MARVEL

3.5.1         Training Phase

3.5.2         Working Phase

3.5.3         MARVEL Model Implementation

3.6   Performance Evaluation

3.6.1         Simulation Setup

3.6.2         Comparison Scheme

3.6.3         Simulation Results

3.7   Conclusion

 

4        Deep Reinforcement Learning-based Flow Scheduling for Power Efficiency in Data Center Networks

4.1   Introduction of Data Center Networks

4.1.1         Traffic Classification

4.1.2         Traffic Dynamic Analysis

4.2   Motivation

4.2.1         Problems of Existing Solutions

4.2.2         Opportunity

4.3   Problem formulation

4.3.1         Design Considerations

4.3.2         Problem Formulation

4.4   Overview of SmartFCT

4.5   Design Details of SmartFCT

4.5.1         Flow Information Collection

4.5.2         DRL Algorithm Framework

4.5.3         DRL Implementation Details

4.6   Performance Evaluation

4.6.1         Simulation Setup

4.6.2         Comparison Scheme

4.6.3         Simulation Results

4.7   Conclusion

 

5        Graph Neural Network-based Coflow Scheduling in Data Center Networks

5.1   Introduction of Coflow

5.2   Motivation

5.2.1         Problems of Existing Solutions

5.2.2         Opportunity

5.3   Problem Formulation

5.4   Overview of DeepWeave

5.5   Design Details of DeepWeave

5.5.1         DRL Framework for Training

5.5.2         Neural Network Implementation

5.5.3         Policy Converter

5.6   Performance Evaluation

5.6.1         Simulation Setup

5.6.2         Comparison Scheme

5.6.3         Simulation Results

5.7   Conclusion

 

6        Graph Neural Network-based Flow Migration for Network Function Virtualization

6.1   Introduction of Network Function Virtualization

6.1.1         Network Function Virtualization

6.1.2         State Migration in NFV

6.2   Motivation

6.2.1         Problems of Existing Solutions

6.2.2         Opportunity

6.3   Flow Migration Problem Formulation

6.4   Overview of DeepMigration

6.5   Design details of DeepMigration

6.5.1         Training Framework

6.5.2         GNN-based Function Approximator

6.5.3         Training Process

6.6   Performance Evaluation

6.6.1         Simulation Setup

6.6.2         Comparison Scheme

6.6.3         Simulation Results

6.7   Conclusion

 

7  Conclusion and Future work

 

Dr. Zehua Guo received B.S. degree from Northwestern Polytechnical University, Xi’an, China, M.S. degree from Xidian University, Xi’an, China, and Ph.D. degree from Northwestern Polytechnical University, Xi’an, China. He is an Associate Professor at Beijing Institute of Technology, Beijing, China. He was a Research Fellow at the Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, New York, NY, USA, and a Postdoctoral Research Associate at the Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA. His research interests include programmable networks (e.g., software-defined networking, network function virtualization), machine learning, and network security. He is an Associate Editor of the IEEE Systems Journal, and EURASIP Journal on Wireless Communications and Networking (Springer), an Editor of the KSII Transactions on Internet and Information Systems, and a Guest Editor of the Journal of Parallel and Distributed Computing. He was the Session Chair for the IJCAI 2021, IEEE ICC 2018,  and currently serves as the Technical Program Committee Member of Computer Communications, AAAI, IWQoS, ICC, ICCCN, and ICA3PP. He has published 58 papers in prestigious IEEE/ACM/Elsevier journals and conferences, including TON, JSAC, IJCAI, TNSM, Computer Networks, ICDCS, IWQoS, and applied/owned 14 patents. He is a Senior Member of IEEE, China Institute of Communications, and Chinese Institute of Electronics, and a Member of China Computer Federation, ACM, ACM SIGCOMM, and ACM SIGCOMM China.

Emerging machine learning techniques bring new opportunities to flexible network control and management. This book focuses on using state-of-the-art machine learning-based approaches to improve the performance of Software-Defined Networking (SDN). It will apply several innovative machine learning methods (e.g., Deep Reinforcement Learning, Multi-Agent Reinforcement Learning, and Graph Neural Network) to traffic engineering and controller load balancing in software-defined wide area networks, as well as flow scheduling, coflow scheduling, and flow migration for network function virtualization in software-defined data center networks. It helps readers reflect on several practical problems of deploying SDN and learn how to solve the problems by taking advantage of existing machine learning techniques. The book elaborates on the formulation of each problem, explains design details for each scheme, and provides solutions by running mathematical optimization processes, conducting simulated experiments, and analyzing the experimental results.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia