• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Blind Equalization in Neural Networks: Theory, Algorithms and Applications » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Blind Equalization in Neural Networks: Theory, Algorithms and Applications

ISBN-13: 9783110449624 / Angielski / Twarda / 2017 / 268 str.

Liyi Zhang;Tsinghua University Press
Blind Equalization in Neural Networks: Theory, Algorithms and Applications Zhang, Liyi 9783110449624 de Gruyter - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Blind Equalization in Neural Networks: Theory, Algorithms and Applications

ISBN-13: 9783110449624 / Angielski / Twarda / 2017 / 268 str.

Liyi Zhang;Tsinghua University Press
cena 596,10
(netto: 567,71 VAT:  5%)

Najniższa cena z 30 dni: 518,08
Termin realizacji zamówienia:
ok. 30 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
Kategorie:
Technologie
Kategorie BISAC:
Computers > Data Science - Neural Networks
Computers > Artificial Intelligence - General
Technology & Engineering > Signals & Signal Processing
Wydawca:
de Gruyter
Język:
Angielski
ISBN-13:
9783110449624
Rok wydania:
2017
Ilość stron:
268
Waga:
0.62 kg
Wymiary:
24.41 x 16.99 x 1.6
Oprawa:
Twarda
Wolumenów:
01

Table of Content
Chapter 1 Introduction
1.1 Significance of Blind Equalization
1.2 Application of Blind Equalization
1.2.1 Application in Digital TV
1.2.2 Application in CATV System
1.2.3 Application in Smart Antenna
1.2.4 Application in Software Radio
1.2.5 Application in Blind Image Restoration
1.2.6 Application in RFID
1.3 Progress of Neural Network Blind Equalization Algorithm
1.3.1 Feedforward Neural Network Blind Equalization Algorithm
1.3.2 Feedback Neural Network Blind Equalization Algorithm5
1.3.3 Fuzzy Neural Network Blind Equalization Algorithm
1.3.4 Evolutionary Neural Network Blind Equalization Algorithm
1.3.5 Wavelet Neural Network Blind Equalization Algorithm
1.4 Research Background and Structural Arrangements
1.4.1 Background
1.4.2 Structural Arrangement of Book
Chapter 2 Principle of Neural Network Blind Equalization Algorithm
2.1 Basic Principles of Blind Equalization
2.1.1 Concept of Blind Equalization
2.1.2 Structure of Blind Equalizer
2.1.3 Basic Blind Equalization Algorithm
2.1.4 Equalization Criteria of Blind Equalization
2.2 Theory of Neural Networks
2.2.1 Concept of Artificial Neural Networks
2.2.2 Development of Artificial Neural Networks
2.2.3 Features of Artificial Neural Networks
2.2.4 Structure and Classification of Artificial Neural Networks
2.3 Basic Principles of Neural Network Blind Equalization Algorithm
2.3.1 Blind Equalization Algorithm Based on Neural Network Filter
2.3.2 Blind Equalization Algorithm Based on Neural Network Controller
2.3.3 Blind Equalization Algorithm Based on Neural Network Classifier
2.4 Learning Methods of Neural Network Blind Equalization Algorithm
2.4.1 BP Algorithm
2.4.2 Improved BP Algorithm
2.5 Evaluation of Neural Network Blind Equalization Algorithm
2.5.1 Convergence Rate
2.5.2 Computational Complexity
2.5.3 BER Performance
2.5.4 The Ability Tracking Time-varying Channel
2.5.5 Anti-jamming Capability
2.5.6 Convexity of Cost Function
2.5.7 State Residual Error
2.6 Summary
Chapter 3 Research of Feedforward Neural Network Blind Equalization Algorithm
3.1 Basic Principles of Feedforward Neural Networks
3.1.1 Concept of Feedforward Neural Networks
3.1.2 Structure of Feedforward Neural Networks
3.1.3 Features of Feedforward Neural Networks
3.2 Blind Equalization Algorithm Based on Three-layered Feedforward Neural Networks
3.2.1 Model of Three-layered Feedforward Neural Networks
3.2.2 Real Blind Equalization Algorithm Based on Three-layered Feedforward Neural Networks
3.2.3 Complex Blind Equalization Algorithm Based on Three-layered Feedforward Neural Networks
3.3 Blind Equalization Algorithm Based on Multi-layered Feedforward Neural Networks
3.3.1 Concept of Multi-layered Feedforward Neural Networks
3.3.2 Blind Equalization Algorithm Based on Four-layered Feedforward Neural Networks
3.3.3 Blind Equalization Algorithm Based on Five-layered Feedforward Neural Networks
3.4 Blind Equalization Algorithm Based on Momentum Feedforward Neural Networks
3.4.1 Basic Principles of Algorithm
3.4.2 Derivation of Algorithm
3.4.3 Computer Simulations
3.5 Blind Equalization Algorithm Based on Time-varying Momentum Feedforward Neural Networks
3.5.1 Basic Principles of Algorithm
3.5.2 Derivation of Algorithm
3.5.3 Computer Simulations
3.6 Blind Equalization Algorithm Based on Variable Step-size Feedforward Neural Networks
3.6.1 Basic Principles of Algorithm
3.6.2 Derivation of Algorithm
3.6.3 Computer Simulations
3.7 Summary
Appendix I: Hidden Layer Weight Iteration Formula Derivation of Complex Blind Equalization Algorithm Based on Three-layered Feedforward Neural Networks
Chapter 4 Research of Feedback Neural Network Blind Equalization Algorithm
4.1 Basic Principles of Feedback Neural Networks
4.1.1 Concept of Feedback Neural Networks
4.1.2 Structure of Feedback Neural Networks
4.1.3 Features of Feedback Neural Networks
4.2 Blind Equalization Algorithm Based on Bilinear Feedback Neural Networks
4.2.1 Model of Bilinear Feedback Neural Networks
4.2.2 Real Blind Equalization Algorithm Based on Bilinear Feedback Neural Networks
4.2.3 Complex Blind Equalization Algorithm Based on Bilinear Feedback Neural Networks
4.3 Blind Equalization Algorithm Based on Diagonal Recurrent Neural Networks
4.3.1 Model of Diagonal Recurrent Neural Networks
4.3.2 Derivation of Algorithm
4.3.3 Computer Simulations
4.4 Blind Equalization Algorithm Based on Quasi-diagonal Recurrent Neural Networks
4.4.1 Model of Quasi-diagonal Recurrent Neural Networks
4.4.2 Derivation of Algorithm
4.4.3 Computer Simulations
4.5 Blind Equalization Algorithm Based on Variable Step-size Diagonal Recurrent Neural Networks
4.5.1 Basic Principles of Algorithm
4.5.2 Derivation of Algorithm
4.5.3 Computer Simulations
4.6 Blind Equalization Algorithm Based on Variable Step-size Quasi-diagonal Recurrent Neural Networks
4.6.1 Basic Principles of Algorithm
4.6.2 Derivation of Algorithm
4.6.3 Computer Simulations
4.7 Summary
Appendix I: Iteration Formula Derivation of Complex Blind Equalization Algorithm Based on Bilinear Feedback Neural Networks
Chapter 5 Research of Fuzzy Neural Network Blind Equalization Algorithm
5.1 Basic Principles of Fuzzy Neural Networks
5.1.1 Concept of Fuzzy Neural Networks
5.1.2 Structure of Fuzzy Neural Networks
5.1.3 Choosing Fuzzy Membership Functions
5.1.4 Learning Algorithms of Fuzzy Neural Networks
5.1.5 Features of Fuzzy Neural Networks
5.2 Blind Equalization Algorithm Based on Fuzzy Neural Network Filter
5.2.1 Basic Principles of Algorithm
5.2.2 Derivation of Algorithm
5.2.3 Computer Simulations
5.3 Blind Equalization Algorithm Based on Fuzzy Neural Network Controller
5.3.1 Basic Principles of Algorithm
5.3.2 Derivation of Algorithm
5.3.3 Computer Simulations
5.4 Blind Equalization Algorithm Based on Fuzzy Neural Network Classifier
5.4.1 Basic Principles of Algorithm
5.4.2 Derivation of Algorithm
5.4.3 Computer Simulations
5.5 Summary
Appendix I: Types of Fuzzy Membership Functions
Appendix II: Iteration Formula Derivation of Blind Equalization Algorithm Based on Dynamic Recurrent Fuzzy Neural Networks
Chapter 6 Research of Evolutionary Neural Network Blind Equalization Algorithm
6.1 Basic Principles of Evolutionary Neural Networks
6.1.1 Concept of Genetic Algorithm
6.1.2 Development of Genetic Algorithm
6.1.3 Parameters of Genetic Algorithm
6.1.4 Basic Process of Genetic Algorithm
6.1.5 Features of Genetic Algorithm
6.1.6 Combination of Genetic Algorithm and Neural Networks
6.2 Neural Network Weight Optimization Blind Equalization Algorithm Using GA
6.2.1 Basic Principles of Algorithm
6.2.2 Neural Network Weight Optimization Blind Equalization Algorithm Using Binary Coding GA
6.2.3 Neural Network Weight Optimization Blind Equalization Algorithm Using Real Coding GA
6.3 Neural Network Structure Optimization Blind Equalization Algorithm Using GA
6.3.1 Basic Principles of Algorithm
6.3.2 Derivation of Algorithm
6.3.3 Computer Simulations
6.4 Summary
Chapter 7 Research of Wavelet Neural Network Blind Equalization Algorithm
7.1 Basic Principles of Wavelet Neural Networks
7.1.1 Concept of Wavelet Neural Networks
7.1.2 Structure of Wavelet Neural Networks
7.1.3 Features of Wavelet Neural Networks4
7.2 Blind Equalization Algorithm Based on Feedforward Wavelet Neural Networks
7.2.1 Basic Principles of Algorithm
7.2.2 Real Blind Equalization Algorithm Based on Feedforward Wavelet Neural Networks
7.2.3 Complex Blind Equalization Algorithm Based on Feedforward Wavelet Neural Networks
7.3 Blind Equalization Algorithm Based on Feedback Wavelet Neural Networks
7.3.1 Basic Principles of Algorithm3
7.3.2 Real Blind Equalization Algorithm Based on Feedback Neural Networks
7.3.3 Complex Blind Equalization Algorithm Based on Feedback Neural
Networks
7.4 Summary
Chapter 8 Application of Neural Network Blind Equalization Algorithm in Medical Image Processing
8.1 Concept of Image Blind Equalization
8.1.1 Imaging Mechanism and Degradation Process of Medical CT Image
8.1.2 Basic Principles of Medical CT Image Blind Equalization
8.1.3 Quantitative Measurement of Medical Image Blind Equalization
8.2 Medical CT Image Neural Network Blind Equalization Algorithm Based on Zigzag Coding
8.2.1 Basic Principles of Algorithm
8.2.2 teration Formula Derivation of Algorithm
8.2.3 Convergence Analysis of Algorithm
8.2.4 Computer Simulations
8.3 Medical CT Image Neural Network Blind Equalization Algorithm Based on Double Zigzag Coding
8.3.1 Basic Principles of Algorithm
8.3.2 Iteration Formula Derivation of Algorithm
8.3.3 Computer Simulations
8.4 Summary
References

Liyi Zhang, Tianjin University of Commerce, Tianjin, China.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia