• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Biomedical Optics: Principles and Imaging » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Biomedical Optics: Principles and Imaging

ISBN-13: 9780471743040 / Angielski / Twarda / 2007 / 376 str.

Lihong V. Wang; Hsin-I Wu
Biomedical Optics: Principles and Imaging Wang, Lihong V. 9780471743040 Wiley-Interscience - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Biomedical Optics: Principles and Imaging

ISBN-13: 9780471743040 / Angielski / Twarda / 2007 / 376 str.

Lihong V. Wang; Hsin-I Wu
cena 646,70 zł
(netto: 615,90 VAT:  5%)

Najniższa cena z 30 dni: 640,08 zł
Termin realizacji zamówienia:
ok. 30 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

This entry-level textbook, covering the area of tissue optics, is based on the lecture notes for a graduate course (Bio-optical Imaging) that has been taught six times by the authors at Texas A&M University. After the fundamentals of photon transport in biological tissues are established, various optical imaging techniques for biological tissues are covered. The imaging modalities include ballistic imaging, quasi-ballistic imaging (optical coherence tomography), diffusion imaging, and ultrasound-aided hybrid imaging. The basic physics and engineering of each imaging technique are emphasized. A solutions manual is available for instructors; to obtain a copy please email the editorial department at ialine@wiley.com.

Kategorie:
Nauka, Fizyka
Kategorie BISAC:
Medical > Diagnostyka medyczna
Science > Optyka
Wydawca:
Wiley-Interscience
Język:
Angielski
ISBN-13:
9780471743040
Rok wydania:
2007
Ilość stron:
376
Waga:
0.69 kg
Wymiary:
16.5 x 24.2 x 2.2
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

Preface.

1. INTRODUCTION.

1.1.Motivation for optical imaging.

1.2.General behavior of light in biological tissue.

1.3.Basic physics of light–matter interaction.

1.4.Absorption and its biological origins.

1.5.Scattering and its biological origins.

1.6.Polarization and its biological origins.

1.7.Fluorescence and its biological origins.

1.8.Image characterization.

1.9.References.

1.10.Further readings.

1.11.Problems.

2. RAYLEIGH THEORY AND MIE THEORY FOR A SINGLE SCATTERER.

2.1.Introduction.

2.2.Summary of the Rayleigh theory.

2.3.Numerical example of the Rayleigh theory.

2.4.Summary of the Mie theory.

2.5.Numerical example of the Mie theory.

2.6.Appendix 2.A. Derivation of the Rayleigh theory.

2.7.Appendix 2.B. Derivation of the Mie theory.

2.8.References.

2.9.Further readings.

2.10.Problems.

3. MONTE CARLO MODELING OF PHOTON TRANSPORT IN BIOLOGICAL TISSUE.

3.1.Introduction.

3.2.Monte Carlo method.

3.3.Definition of problem.

3.4.Propagation of photons.

3.5.Physical quantities.

3.6.Computational examples.

3.7.Appendix 3.A. Summary of MCML.

3.8.Appendix 3.B. Probability density function.

3.9.References.

3.10.Further readings.

3.11.Problems.

4. CONVOLUTION FOR BROADBEAM RESPONSES.

4.1.Introduction.

4.2.General formulation of convolution.

4.3.Convolution over a Gaussian beam.

4.4.Convolution over a top–hat beam.

4.5.Numerical solution to convolution.

4.6.Computational examples.

4.7.Appendix 4.A. Summary of CONV.

4.8.References.

4.9.Further readings.

4.10.Problems.

5. RADIATIVE TRANSFER EQUATION AND DIFFUSION THEORY.

5.1.Introduction.

5.2.Definitions of physical quantities.

5.3.Derivation of the radiative transport equation.

5.4.Diffusion theory.

5.5.Boundary conditions.

5.6.Diffuse reflectance.

5.7.Photon propagation regimes.

5.8.References.

5.9.Further readings.

5.10.Problems.

6. HYBRID MODEL OF MONTE CARLO METHOD AND DIFFUSION THEORY.

6.1.Introduction.

6.2.Definition of problem.

6.3.Diffusion theory.

6.4.Hybrid model.

6.5.Numerical computation.

6.6.Computational examples.

6.7.References.

6.8.Further readings.

6.9.Problems.

7. SENSING OF OPTICAL PROPERTIES AND SPECTROSCOPY.

7.1.Introduction.

7.2.Collimated transmission method.

7.3.Spectrophotometry.

7.4.Oblique–incidence reflectometry.

7.5.White–light spectroscopy.

7.6.Time–resolved measurement.

7.7.Fluorescence spectroscopy.

7.8.Fluorescence modeling.

7.9.References.

7.10.Further readings.

7.11.Problems.

8. BALLISTIC IMAGING AND MICROSCOPY.

8.1.Introduction.

8.2.Characteristics of ballistic light.

8.3.Time–gated imaging.

8.4.Spatial–frequency filtered imaging.

8.5.Polarization–difference imaging.

8.6.Coherence–gated holographic imaging.

8.7.Optical heterodyne imaging.

8.8.Radon transformation and computed tomography.

8.9.Confocal microscopy.

8.10.Two–photon microscopy.

8.11.Appendix 8.A. Holography.

8.12.References.

8.13.Further readings.

8.14.Problems.

9. OPTICAL COHERENCE TOMOGRAPHY.

9.1.Introduction.

9.2.Michelson interferometry.

9.3.Coherence length and coherence time.

9.4.Time–domain OCT.

9.5.Fourier–domain rapid scanning optical delay line.

9.6.Fourier–domain OCT.

9.7.Doppler OCT.

9.8.Group velocity dispersion.

9.9.Monte Carlo modeling of OCT.

9.10.References.

9.11.Further readings.

9.12.Problems.

10. MUELLER OPTICAL COHERENCE TOMOGRAPHY.

10.1.Introduction.

10.2.Mueller calculus versus Jones calculus.

10.3.Polarization state.

10.4.Stokes vector.

10.5.Mueller matrix.

10.6.Mueller matrices for a rotator, a polarizer, and a retarder.

10.7.Measurement of Mueller matrix.

10.8.Jones vector.

10.9.Jones matrix.

10.10.Jones matrices for a rotator, a polarizer, and a retarder.

10.11.Eigenvectors and eigenvalues of Jones matrix.

10.12.Conversion from Jones calculus to Mueller calculus.

10.13.Degree of polarization in OCT.

10.14.Serial Mueller OCT.

10.15.Parallel Mueller OCT.

10.16.References.

10.17.Further readings.

10.18.Problems.

11. DIFFUSE OPTICAL TOMOGRAPHY.

11.1.Introduction.

11.2.Modes of diffuse optical tomography.

11.3.Time–domain system.

11.4.Direct–current system.

11.5.Frequency–domain system.

11.6.Frequency–domain theory: basics.

11.7.Frequency–domain theory: linear image reconstruction.

11.8.Frequency–domain theory: general image reconstruction.

11.9.Appendix 11.A. ART and SIRT.

11.10.References.

11.11.Further readings.

11.12.Problems.

12. PHOTOACOUSTIC TOMOGRAPHY.

12.1.Introduction.

12.2.Motivation for photoacoustic tomography.

12.3.Initial photoacoustic pressure.

12.4.General photoacoustic equation.

12.5.General forward solution.

12.6.Delta–pulse excitation of a slab.

12.7.Delta–pulse excitation of a sphere.

12.8.Finite–duration pulse excitation of a thin slab.

12.9.Finite–duration pulse excitation of a small sphere.

12.10.Dark–field confocal photoacoustic microscopy.

12.11.Synthetic aperture image reconstruction.

12.12.General image reconstruction.

12.13.Appendix 12.A. Derivation of acoustic wave equation.

12.14.Appendix 12.B. Green′s function approach.

12.15.References.

12.16.Further readings.

12.17.Problems.

13. ULTRASOUND–MODULATED OPTICAL TOMOGRAPHY.

13.1.Introduction.

13.2.Mechanisms of ultrasonic modulation of coherent light.

13.3.Time–resolved frequency–swept UOT.

13.4.Frequency–swept UOT with parallel–speckle detection.

13.5.Ultrasonically modulated virtual optical source.

13.6.Reconstruction–based UOT.

13.7.UOT with Fabry–Perot interferometry.

Problems.

Reading.

Furhter Reading. 

APPENDIX A. DEFINITIONS OF OPTICAL PROPERTIES.

APPENDIX B. List of Acronyms.

Index.

Lihong V. Wang, PhD, is Gene K. Beare Distinguished Professor in the Department of Biomedical Engineering and Director of the Optical Imaging Laboratory at Washington University in St. Louis. Dr. Wang is Chair of the International Biomedical Optics Society. His?Monte Carlo model of photon transport in biological tissues has been used worldwide. He has published more than 120 peer–reviewed journal articles and patents.

HSIN–I WU, PhD, is Professor of Biomedical Engineering at Texas A&M University. He has published more than fifty peer–reviewed journal articles. Dr. Wu was a senior Fulbright scholar and is listed in Outstanding Educators of America. He serves on the Editorial Advisory Board of Biocomplexity and the Editorial Board of BioMedical Engineering OnLine.

The premier comprehensive reference on biomedical optics for practitioners and students

Biophotonics is a rapidly growing field with applications in medicine, genetics, biology, agriculture, and environmental science.?Written by respected experts, Biomedical Optics: Principles and Imaging is the first thorough reference and textbook on the subject. It covers:

  • The fundamentals of photon transport in biological tissues, including explanations of Rayleigh and Mie scattering, Monte Carlo simulations, the radiative transport equation, and more

  • Various optical imaging techniques for biological tissues, including ballistic or quasi–ballistic imaging (such as confocal microscopy, two–photon microscopy, and optical coherence tomography), diffuse imaging (such as DC, time–domain techniques, and frequency–domain techniques), and ultrasound–aided hybrid imaging (including photoacoustic tomography and ultrasound–modulated optical tomography)

  • The basic physics and engineering of each imaging modality

Complete with equation derivations, examples, and case studies plus a constantly updated Web site featuring an established Monte Carlo program, other sample programs, tables and figures, and more, this is a great reference for practitioners. With an instructor′s solutions manual and problems for students to complete, it′s an excellent textbook for upper–level undergraduates or graduate students.

Wang, Lihong V. Lihong V. Wang, PhD, is Gene K. Beare Distinguishe... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia