Local Stability and Bifurcations.- Low-dimensional Discrete Systems.- Global Stability in 1-D discrete systems.- Forward and backward discrete systems.- Infinite-fixed-point Systems.- Subject index.
Prof. Albert C. J. Luo is a Distinguished Research Professor at the Department of Mechanical Engineering at Southern Illinois University Edwardsville, USA. He received his Ph.D. degree from the University of Manitoba, Canada, in 1995. His research focuses on mechanics, dynamics and mechanical vibration, and he has published over 40 books, and more than 200 journal articles and conference papers in these fields. He received the Paul Simon Outstanding Scholar Award in 2008 and an ASME fellowship in 2007. He now serves as Co-editor of the Journal of Applied Nonlinear Dynamics and Editor of various book series, including “Nonlinear Systems and Complexity,” and “Nonlinear Physical Science.”
This book focuses on bifurcation and stability in nonlinear discrete systems, including monotonic and oscillatory stability. It presents the local monotonic and oscillatory stability and bifurcation of period-1 fixed-points on a specific eigenvector direction, and discusses the corresponding higher-order singularity of fixed-points. Further, it explores the global analysis of monotonic and oscillatory stability of fixed-points in 1-dimensional discrete systems through 1-dimensional polynomial discrete systems. Based on the Yin-Yang theory of nonlinear discrete systems, the book also addresses the dynamics of forward and backward nonlinear discrete systems, and the existence conditions of fixed-points in said systems. Lastly, in the context of local analysis, it describes the normal forms of nonlinear discrete systems and infinite-fixed-point discrete systems. Examining nonlinear discrete systems from various perspectives, the book helps readers gain a better understanding of the nonlinear dynamics of such systems.