• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Bernoulli Numbers and Zeta Functions » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Bernoulli Numbers and Zeta Functions

ISBN-13: 9784431563839 / Angielski / Miękka / 2016 / 274 str.

Tsuneo Arakawa; Tomoyoshi Ibukiyama; Masanobu Kaneko
Bernoulli Numbers and Zeta Functions Tsuneo Arakawa Tomoyoshi Ibukiyama Masanobu Kaneko 9784431563839 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Bernoulli Numbers and Zeta Functions

ISBN-13: 9784431563839 / Angielski / Miękka / 2016 / 274 str.

Tsuneo Arakawa; Tomoyoshi Ibukiyama; Masanobu Kaneko
cena 564,88 zł
(netto: 537,98 VAT:  5%)

Najniższa cena z 30 dni: 539,74 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen-von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler-Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; class number formula for positive definite binary quadratic forms; congruences between some class numbers and Bernoulli numbers; simple zeta functions of prehomogeneous vector spaces; Hurwitz numbers; Barnes multiple zeta functions and their special values; the functional equation of the double zeta functions; and poly-Bernoulli numbers. An appendix by Don Zagier on curious and exotic identities for Bernoulli numbers is also supplied. This book will be enjoyable both for amateurs and for professional researchers. Because the logical relations between the chapters are loosely connected, readers can start with any chapter depending on their interests. The expositions of the topics are not always typical, and some parts are completely new.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Teoria liczb
Mathematics > Mathematical Analysis
Mathematics > Algebra - General
Wydawca:
Springer
Seria wydawnicza:
Springer Monographs in Mathematics
Język:
Angielski
ISBN-13:
9784431563839
Rok wydania:
2016
Wydanie:
Softcover Repri
Numer serii:
000038505
Ilość stron:
274
Waga:
0.41 kg
Wymiary:
23.39 x 15.6 x 1.52
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

"The book touches on all of the well-known classical results related to Bernoulli numbers and zeta functions ... . The book will offer something to readers at all levels of expertise, from the student of number theory looking for interesting topics to delve into, to researchers looking for an overview of various results, in each case pointing the way to further study." (Luis Manuel Navas Vicente, Mathematical Reviews, October, 2015)

"This book ... is perhaps the first full-length treatment of these fascinating numbers-certainly the first modern one. ... the book has an interdisciplinary character, offering thorough treatments of the Bernoulli numbers from the optics of the history of mathematics, combinatorics, analytic number theory, and algebraic number theory ... . Summing Up: Highly recommended. Upper-division undergraduates and above." (D. V. Feldman, Choice, Vol. 52 (10), June, 2015)

"The present book contains some specific material reflecting the research interests of the authors. ... The monograph is a useful addition to the library of every researcher working on special numbers and special functions." (Khristo N. Boyadzhiev, zbMATH 1312.11015, 2015)

"The book under review is about Bernoulli numbers and zeta functions. ... The main audience for the book are researchers and students studying Bernoulli numbers and related topics. The text of the book is very fluent. Concepts and proofs are introduced in detail, and it is easy to follow for reader. There are some exercises, so the book can be used in a graduate course as well." (Mehdi Hassani, MAA Reviews, December, 2014)

​1. Bernoulli Numbers 2. Stirling Numbers and Bernoulli Numbers3. Theorem of Clausen and von Staudt, and Kummer’s Congruence4. Generalized Bernoulli Numbers5. Summation Formula of Euler–Maclaurin and Riemann Zeta Function 6. Quadratic Forms and Ideal Theory of Quadratic Fields 7. Congruence Between Bernoulli Numbers and Class Numbers of Imaginary Quadratic Fields 8. Character Sums and Bernoulli Numbers 9. Special Values and Complex Integral Representation of L-functions 10. Class Number Formula and an Easy Zeta Function of a Prehomogeneous Vector Space11. p-adic Measure and Kummer’s Congruence12. Hurwitz Numbers 13. The Barnes Multiple Zeta Function14. Poly-Bernoulli NumbersReferencesIndex

(late) Tsuneo Arakawa

Tomoyoshi Ibukiyama
Professor
Department of Mathematics
Graduate School of Science
Osaka University
Machikaneyama 1-1 Toyonaka, Osaka, 560-0043 Japan

Masanobu Kaneko
Professor
Faculty of Mathematics
Kyushu University
Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan

Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen–von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler–Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; class number formula for positive definite binary quadratic forms; congruences between some class numbers and Bernoulli numbers; simple zeta functions of prehomogeneous vector spaces; Hurwitz numbers; Barnes multiple zeta functions and their special values; the functional equation of the double zeta functions; and poly-Bernoulli numbers. An appendix by Don Zagier on curious and exotic identities for Bernoulli numbers is also supplied. This book will be enjoyable both for amateurs and for professional researchers. Because the logical relations between the chapters are loosely connected, readers can start with any chapter depending on their interests. The expositions of the topics are not always typical, and some parts are completely new.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia