• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Bayesian Analysis of Stochastic Process Models » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Bayesian Analysis of Stochastic Process Models

ISBN-13: 9780470744536 / Angielski / Twarda / 2012 / 316 str.

¬Abar;¬Abar
Bayesian Analysis of Stochastic Process Models  9780470744536 JOHN WILEY AND SONS LTD - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Bayesian Analysis of Stochastic Process Models

ISBN-13: 9780470744536 / Angielski / Twarda / 2012 / 316 str.

¬Abar;¬Abar
cena 425,04 zł
(netto: 404,80 VAT:  5%)

Najniższa cena z 30 dni: 421,55 zł
Termin realizacji zamówienia:
ok. 30 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features:

  • Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment.
  • Provides a thorough introduction for research students.
  • Computational tools to deal with complex problems are illustrated along with real life case studies
  • Looks at inference, prediction and decision making.
Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Twierdzenie Bayesa
Wydawca:
JOHN WILEY AND SONS LTD
Seria wydawnicza:
Wiley Series in Probability and Statistics
Język:
Angielski
ISBN-13:
9780470744536
Rok wydania:
2012
Numer serii:
000033279
Ilość stron:
316
Waga:
0.57 kg
Wymiary:
23.11 x 15.49 x 2.29
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

Preface

PART ONE BASIC CONCEPTS AND TOOLS

1 Stochastic Processes 11

1.1 Introduction 11

1.2 Key Concepts in Stochastic Processes 11

1.3 Main Classes of Stochastic Processes 16

1.4 Inference, Prediction and Decision Making 21

1.5 Discussion 23

2 Bayesian Analysis 27

2.1 Introduction 27

2.2 Bayesian Statistics 28

2.3 Bayesian Decision Analysis 37

2.4 Bayesian Computation 39

2.5 Discussion 51

PART TWO MODELS

3 Discrete Time Markov Chains 61

3.1 Introduction 61

3.2 Important Markov Chain Models 62

3.3 Inference for First Order Chains 66

3.4 Special Topics 76

3.5 Case Study: Wind Directions at Gijon 87

3.6 Markov Decision Processes 94

3.7 Discussion 97

4 Continuous Time Markov Chains and Extensions 105

4.1 Introduction 105

4.2 Basic Setup and Results 106

4.3 Inference and Prediction for CTMCs 108

4.4 Case Study: Hardware Availability through CTMCs 112

4.5 Semi–Markovian Processes 118

4.6 Decision Making with Semi–Markovian Decision Processes 122

4.7 Discussion 128

5 Poisson Processes and Extensions 133

5.1 Introduction 133

5.2 Basics on Poisson Processes 134

5.3 Homogeneous Poisson Processes 138

5.4 Nonhomogeneous Poisson Processes 147

5.5 Compound Poisson Processes 153

5.6 Further Extensions of Poisson Processes 154

5.7 Case Study: Earthquake Occurrences 157

5.8 Discussion 162

6 Continuous Time Continuous Space Processes 169

6.1 Introduction 169

6.2 Gaussian Processes 170

6.3 Brownian Motion and Fractional Brownian Motion 174

6.4 Di®usions 181

6.5 Case Study: Prey–predator Systems 184

6.6 Discussion 190

PART THREE APPLICATIONS

7 Queueing Analysis 201

7.1 Introduction 201

7.2 Basic Queueing Concepts 201

7.3 The Main Queueing Models 204

7.4 Inference for Queueing Systems 208

7.5 Inference for M=M=1 Systems 209

7.6 Inference for Non Markovian Systems 220

7.7 Decision Problems in Queueing Systems 229

7.8 Case Study: Optimal Number of Beds in a Hospital 230

7.9 Discussion 235

8 Reliability 245

8.1 Introduction 245

8.2 Basic Reliability Concepts 246

8.3 Renewal Processes 249

8.4 Poisson Processes 251

8.5 Other Processes 259

8.6 Maintenance 262

8.7 Case Study: Gas Escapes 263

8.8 Discussion 271

9 Discrete Event Simulation 279

9.1 Introduction 279

9.2 Discrete Event Simulation Methods 280

9.3 A Bayesian View of DES 283

9.4 Case Study: A G=G=1 Queueing System 286

9.5 Bayesian Output Analysis 288

9.6 Simulation and Optimization 292

9.7 Discussion 294

10 Risk Analysis 301

10.1 Introduction 301

10.2 Risk Measures 302

10.3 Ruin Problems 316

10.4 Case Study: Ruin Probability Estimation 320

10.5 Discussion 327

Appendix A Main Distributions 337

Appendix B Generating Functions and the Laplace–Stieltjes Transform 347

Index

Bayesian analysis of complex models based on stochastic processes has seen a surge in research activity in recent years. Bayesian Analysis of Stochastic Process Models provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models.

Bayesian Analysis of Stochastic Process Models:

  • Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment.
  • Provides a thorough introduction for research students.
  • Includes computational tools to deal with complex problems, illustrated with real life case studies
  • Computational tools to deal with complex problems are illustrated along with real life case studies
  • Examines inference, prediction and decision making.

Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia